-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
wip
- Loading branch information
Showing
8 changed files
with
914 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
import GoldbachTm.Tm27.TuringMachine27 | ||
import GoldbachTm.Tm27.Search0 | ||
import Mathlib.Data.Nat.Prime.Defs | ||
|
||
namespace Tm27 | ||
|
||
theorem lemma_26 (n : ℕ) (i : ℕ) | ||
(g : | ||
nth_cfg i = some ⟨⟨26, by omega⟩, ⟨Γ.zero, Turing.ListBlank.mk (List.replicate (n+4) Γ.one), Turing.ListBlank.mk []⟩⟩ ) | ||
( hpp : goldbach (n+4)) : | ||
∃ j>i, nth_cfg j = some ⟨⟨26, by omega⟩, ⟨Γ.zero, Turing.ListBlank.mk (List.replicate (n+4+2) Γ.one), Turing.ListBlank.mk []⟩⟩ | ||
:= by | ||
sorry | ||
|
||
|
||
end Tm27 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
-- some lemmas tm31 doesn't contain | ||
|
||
import GoldbachTm.Tm27.TuringMachine27 | ||
import GoldbachTm.Tm27.Transition | ||
|
||
namespace Tm27 | ||
|
||
theorem lemma7 (k : ℕ): ∀ (i : ℕ) (l r : List Γ), | ||
nth_cfg i = some ⟨⟨7, by omega⟩, ⟨Γ.one, Turing.ListBlank.mk (List.replicate k Γ.one ++ List.cons Γ.zero l), Turing.ListBlank.mk r⟩⟩ → | ||
nth_cfg (i + k + 1) = some ⟨⟨7, by omega⟩, ⟨Γ.zero, Turing.ListBlank.mk l, Turing.ListBlank.mk (List.replicate (k+1) Γ.zero ++ r)⟩⟩ := by | ||
induction k with (intros i l r h; simp_all) | ||
| zero => forward h h i | ||
rw [← h] | ||
ring_nf | ||
| succ k => forward h h i | ||
rename_i induction_step | ||
apply induction_step at h | ||
ring_nf at * | ||
simp! [h] | ||
rw [List.append_cons] | ||
rw [← List.replicate_succ'] | ||
ring_nf | ||
|
||
theorem lemma8 (k : ℕ): ∀ (i : ℕ) (l r : List Γ), | ||
nth_cfg i = some ⟨⟨8, by omega⟩, ⟨Γ.one, Turing.ListBlank.mk (List.replicate k Γ.one ++ List.cons Γ.zero l), Turing.ListBlank.mk r⟩⟩ → | ||
nth_cfg (i + k + 2) = some ⟨⟨9, by omega⟩, ⟨Γ.zero, Turing.ListBlank.mk (Γ.zero :: l), Turing.ListBlank.mk (List.replicate k Γ.zero ++ r)⟩⟩ := by | ||
induction k with (intros i l r h; simp_all) | ||
| zero => forward h h i | ||
forward h h (1+i) | ||
rw [← h] | ||
ring_nf | ||
| succ k => forward h h i | ||
rename_i induction_step | ||
apply induction_step at h | ||
ring_nf at * | ||
simp! [h] | ||
rw [List.append_cons] | ||
rw [← List.replicate_succ'] | ||
ring_nf | ||
|
||
theorem lemma5 (k : ℕ): ∀ (i : ℕ) (l r : List Γ), | ||
nth_cfg i = some ⟨⟨5, by omega⟩, ⟨Γ.one, Turing.ListBlank.mk (List.replicate k Γ.one ++ List.cons Γ.zero l), Turing.ListBlank.mk r⟩⟩ → | ||
nth_cfg (i + k + 2) = some ⟨⟨4, by omega⟩, ⟨Γ.zero, Turing.ListBlank.mk (Γ.zero :: l), Turing.ListBlank.mk (List.replicate k Γ.zero ++ r)⟩⟩ := by | ||
induction k with (intros i l r h; simp_all) | ||
| zero => forward h h i | ||
forward h h (1+i) | ||
rw [← h] | ||
ring_nf | ||
| succ k => forward h h i | ||
rename_i induction_step | ||
apply induction_step at h | ||
ring_nf at * | ||
simp! [h] | ||
rw [List.append_cons] | ||
rw [← List.replicate_succ'] | ||
ring_nf | ||
|
||
theorem lemma10 (k : ℕ): ∀ (i : ℕ) (l r : List Γ), | ||
nth_cfg i = some ⟨⟨10, by omega⟩, ⟨Γ.zero, Turing.ListBlank.mk l, Turing.ListBlank.mk (List.replicate k Γ.zero ++ List.cons Γ.one r) ⟩⟩ → | ||
nth_cfg (i + k + 1) = some ⟨⟨10, by omega⟩, ⟨Γ.one, Turing.ListBlank.mk (List.replicate (k+1) Γ.one ++ l), Turing.ListBlank.mk r⟩⟩ := by | ||
induction k with (intros i l r h; simp_all) | ||
| zero => forward h h i | ||
rw [← h] | ||
ring_nf | ||
| succ k => rename_i induction_step | ||
specialize induction_step (i+1) (List.cons Γ.one l) r | ||
have g : i + (k+1) +1 = i + 1 + k + 1 := by omega | ||
rw [g, induction_step] | ||
. simp [List.replicate_succ' (k+1)] | ||
. simp! [nth_cfg, h, step, machine, Turing.Tape.write, Turing.Tape.move] | ||
|
||
theorem lemma_6_to_7 (i : ℕ) (l1: ℕ) (l r : List Γ) | ||
(h : | ||
nth_cfg i = some ⟨⟨6, by omega⟩, ⟨Γ.one, | ||
Turing.ListBlank.mk (List.replicate l1 Γ.one ++ List.cons Γ.zero l), | ||
Turing.ListBlank.mk r, | ||
⟩⟩) : | ||
∃ j>i, nth_cfg j = some ⟨⟨7, by omega⟩, ⟨Γ.zero, | ||
Turing.ListBlank.mk l, | ||
Turing.ListBlank.mk (List.replicate (l1+1) Γ.zero ++ r), | ||
⟩⟩ | ||
:= by | ||
forward h h i | ||
cases l1 with | ||
| zero => use (1+i) | ||
simp [h] | ||
| succ l1 => simp! at h | ||
apply lemma7 at h | ||
use (1+i+l1 + 1) | ||
simp [h] | ||
constructor | ||
. omega | ||
. rw [List.append_cons, ← List.replicate_succ'] | ||
|
||
theorem lemma_9_to_10 (i : ℕ) (r1: ℕ) (l r : List Γ) | ||
(h : | ||
nth_cfg i = some ⟨⟨9, by omega⟩, ⟨Γ.zero, | ||
Turing.ListBlank.mk l, | ||
Turing.ListBlank.mk (List.replicate r1 Γ.zero ++ List.cons Γ.one r), | ||
⟩⟩) : | ||
∃ j>i, nth_cfg j = some ⟨⟨10, by omega⟩, ⟨Γ.one, | ||
Turing.ListBlank.mk (List.replicate r1 Γ.one ++ Γ.zero :: l), | ||
Turing.ListBlank.mk r, | ||
⟩⟩ | ||
:= by | ||
forward h h i | ||
cases r1 with simp_all | ||
| zero => use (1+i) | ||
simp [h] | ||
| succ l1 => simp! at h | ||
apply lemma10 at h | ||
use (1+i+l1 + 1) | ||
simp [h] | ||
omega | ||
|
||
end Tm27 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,94 @@ | ||
-- PDP is short for "prime board prime" | ||
import GoldbachTm.Tm27.TuringMachine27 | ||
import GoldbachTm.Tm27.Search0 | ||
import GoldbachTm.Tm27.Prime | ||
import Mathlib.Data.Nat.Prime.Defs | ||
|
||
namespace Tm27 | ||
|
||
-- l1 : count of 1 on the left | ||
-- r1 : count of 1 on the right | ||
theorem lemma_18 (i l1 r1: ℕ) | ||
(hp : ¬ Nat.Prime (l1+1) \/ ¬ Nat.Prime (r1+1)) | ||
(g : | ||
nth_cfg i = some ⟨⟨18, by omega⟩, ⟨Γ.one, Turing.ListBlank.mk (List.replicate (l1+1) Γ.one), Turing.ListBlank.mk (List.replicate (r1+1) Γ.one)⟩⟩ | ||
): | ||
∃ j>i, nth_cfg j = some ⟨⟨18, by omega⟩, ⟨Γ.one, Turing.ListBlank.mk (List.replicate l1 Γ.one), Turing.ListBlank.mk (List.replicate (r1+2) Γ.one)⟩⟩ := by | ||
forward g g i | ||
forward g g (1+i) | ||
forward g g (2+i) | ||
by_cases hr1 : Nat.Prime (r1+1) | ||
. refine (?_ ∘ (prime_21 (3+i) r1 (Γ.one :: List.replicate l1 Γ.one) [])) ?_ | ||
. intros g | ||
specialize g hr1 | ||
obtain ⟨j, _, g⟩ := g | ||
forward g g j | ||
refine (?_ ∘ (lemma_22_to_24 (1+j) l1 [] (Γ.zero :: Γ.one :: (List.replicate r1 Γ.one ++ [Γ.zero])))) ?_ | ||
. intros g | ||
obtain ⟨k, g⟩ := g | ||
forward g g (k+(1+j)) | ||
have h : ¬ Nat.Prime (l1+1) := by tauto | ||
apply n_prime_17 at h | ||
pick_goal 5 | ||
. rw [g] | ||
simp | ||
repeat any_goals apply And.intro | ||
all_goals rfl | ||
obtain ⟨m, _, h⟩ := h | ||
forward h h m | ||
forward h h (1+m) | ||
forward h h (2+m) | ||
apply rec26 at h | ||
forward h h (3+m+l1+1) | ||
use (5+m+l1) | ||
constructor | ||
. omega | ||
. simp [h] | ||
repeat any_goals apply And.intro | ||
all_goals simp! [Turing.ListBlank.mk] | ||
all_goals rw [Quotient.eq''] | ||
all_goals right | ||
. use 2 | ||
tauto | ||
. use 1 | ||
simp | ||
tauto | ||
. simp! [g, Turing.ListBlank.mk] | ||
rw [Quotient.eq''] | ||
left | ||
use 1 | ||
tauto | ||
. simp! [g, Turing.ListBlank.mk] | ||
rw [Quotient.eq''] | ||
left | ||
use 1 | ||
tauto | ||
. apply n_prime_17 at hr1 | ||
pick_goal 5 | ||
. rw [g] | ||
simp | ||
repeat any_goals apply And.intro | ||
. rfl | ||
. simp! [Turing.ListBlank.mk] | ||
rw [Quotient.eq''] | ||
left | ||
use 1 | ||
tauto | ||
obtain ⟨j, _, g⟩ := hr1 | ||
forward g g j | ||
use (1+j) | ||
constructor | ||
. omega | ||
. simp! [g] | ||
simp! [Turing.ListBlank.mk] | ||
rw [Quotient.eq''] | ||
right | ||
use 1 | ||
rw [← List.cons_append] | ||
rw [← List.replicate_succ] | ||
rw [← List.cons_append] | ||
rw [← List.replicate_succ] | ||
ring_nf | ||
tauto | ||
|
||
end Tm27 |
Oops, something went wrong.