CSRNet (Try our Pytorch Version!)
This is the repo for CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes in CVPR 2018, which delivered a state-of-the-art, straightforward and end-to-end architecture for crowd counting tasks.
ShanghaiTech Dataset: Google Drive
This is the model for test. The results should be similar to the results shown in the paper(slightly better or worse).
-
ShanghaiTech_Part_A: Google Drive
-
ShanghaiTech_Part_B: Google Drive
- A good CAFFE
We understand that it's tedious and difficult to config a custom input layer (even installing CAFFE on your own PC), thus we make a pytorch version for the csrnet: CSRNet Pytorch Version
If you find the CSRNet useful, please cite our paper. Thank you!
@inproceedings{li2018csrnet,
title={CSRNet: Dilated convolutional neural networks for understanding the highly congested scenes},
author={Li, Yuhong and Zhang, Xiaofan and Chen, Deming},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={1091--1100},
year={2018}
}
Please cite the Shanghai datasets and other works if you use them.
@inproceedings{zhang2016single,
title={Single-image crowd counting via multi-column convolutional neural network},
author={Zhang, Yingying and Zhou, Desen and Chen, Siqin and Gao, Shenghua and Ma, Yi},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={589--597},
year={2016}
}