Predicting nonlinear dynamics with machine learning techniques
-
TIme series mutual information delay embedding for phase portraits example Lorenz attractor - Time_Series-Delay_Embedding.ipynb
-
Future work
- S. Ouala et al., “Learning Latent Dynamics for Partially-Observed Chaotic Systems,” arXiv:1907.02452 [cs, stat], Jul. 2019.
- J. Pathak, Z. Lu, B. R. Hunt, M. Girvan, and E. Ott, “Using Machine Learning to Replicate Chaotic Attractors and Calculate Lyapunov Exponents from Data,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 27, no. 12, p. 121102, Dec. 2017.
- N. Dhir, A. R. Kosiorek, and I. Posner, “Bayesian Delay Embeddings for Dynamical Systems,” p. 12, 2017.