Skip to content

Commit

Permalink
Linking try in metrics docs (#691)
Browse files Browse the repository at this point in the history
* Linking try in metrics docs

* more links

* Updating docs with links to trunk

* modifications based on comments
  • Loading branch information
mkaramlou authored Sep 24, 2024
1 parent 25fdc72 commit 208f9a9
Show file tree
Hide file tree
Showing 14 changed files with 58 additions and 0 deletions.
4 changes: 4 additions & 0 deletions docs/metrics/accuracy.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,10 @@ and should be used with caution.
- :kolena-manual-16: API Reference: [`accuracy`][kolena.metrics.accuracy]
</div>

!!!example
To see an example of Accuracy metric in use, checkout the
[MMLU dataset on app.kolena.com/try](https://app.kolena.io/try/dataset/standards?datasetId=32&models=N4IglgJiBcDsDMAaEBjA9gOwGZgOYFcAnAQwBcxMZRIYBGAFgF9Gg&models=N4IglgJiBcBsCcAaEBjA9gOwGZgOYFcAnAQwBcxMZRIYBGAFgF9Gg&models=N4IglgJiBcDsBMAaEBjA9gOwGZgOYFcAnAQwBcxMZRIYBGAFgF9Gg&metricGroupVisibilities=N4IgbglgzhBGA2BTEAuALgJwK6IDQgFtFMIBjKVAbVEhgWXW0QF9cbo4lVMdX26ujXgF1mQA)

## Implementation Details

Accuracy is generally used to evaluate classification models. Aside from classification, accuracy is also often
Expand Down
4 changes: 4 additions & 0 deletions docs/metrics/average-precision.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,10 @@ metric used across popular object detection benchmarks such as [PASCAL VOC 2012]
[COCO](https://cocodataset.org/#detection-2015), and
[Open Images V7](https://storage.googleapis.com/openimages/web/evaluation.html).

!!!example
To see an example use of Average Precision, checkout the
[KITTI Vision Benchmark Suite on app.kolena.com/try.](https://app.kolena.io/try/dataset/standards?datasetId=44&models=N4IglgJiBcAcCsAaEBjA9gOwGZgOYFcAnAQwBcxMZRIYBGAX3qA&models=N4IglgJiBcAcAsAaEBjA9gOwGZgOYFcAnAQwBcxMZRIYBGAX3qA&metricGroupVisibilities=N4IgbglgzhBGA2BTEAuALgJwK6IDQgFtFMIBjKVAbVEhgWXW0QF9cbo4lVMdX26ujXm3Ad63JswC6zIA)

## Implementation Details

The general definition of AP is finding the approximation of the area under the [PR curve](./pr-curve.md). The actual
Expand Down
4 changes: 4 additions & 0 deletions docs/metrics/averaging-methods.md
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,10 @@ most notably:
- [**Micro**](#micro-average): global average of per-sample TP, FP, FN scores
- [**Weighted**](#weighted-average): mean of all per-class scores, weighted by sample sizes for each class

!!!example
To see an example of Macro Averaging Method, checkout the
[KITTI Vision Benchmark Suite on app.kolena.com/try.](https://app.kolena.io/try/dataset/standards?datasetId=44&models=N4IglgJiBcAcCsAaEBjA9gOwGZgOYFcAnAQwBcxMZRIYBGAX3qA&models=N4IglgJiBcAcAsAaEBjA9gOwGZgOYFcAnAQwBcxMZRIYBGAX3qA&metricGroupVisibilities=N4IgbglgzhBGA2BTEAuALgJwK6IDQgFtFMIBjKVAbVEhgWXW0QF9cbo4lVMdX26ujXm3Ad63JswC6zIA)

## Example: Multiclass Classification

Let’s consider the following multiclass classification metrics, computed across a total of 10 samples:
Expand Down
4 changes: 4 additions & 0 deletions docs/metrics/bertscore.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,10 @@ embeddings to capture the semantic and contextual information of words and phras
texts. This approach makes BERTScore more effective at assessing the quality of candidate text because it considers not
only exact word matches but also the overall meaning, fluency, and order of the output.

!!!example
To see and an example of Bert Score, checkout the
[CNN-DailyMail on app.kolena.com/try.](https://app.kolena.io/try/dataset/standards?datasetId=39&models=N4IglgJiBcCcA0IDGB7AdgMzAcwK4CcBDAFzHRlEhgEYBfWoA&models=N4IglgJiBcAcA0IDGB7AdgMzAcwK4CcBDAFzHRlEhgEYBfWoA&metricGroupVisibilities=N4IgbglgzhBGA2BTEAuALgJwK6IDQgFtFMIBjKVAbVEhgWXW0QF9cbo4lVMdX26ujXm3Ad63Jn1ECGPFgF1mQA)

??? question "Recall: BERT & Textual Embeddings"
BERT (**B**idirectional **E**ncoder **R**epresentations from **T**ransformers) is a popular language model used to
generate embeddings from words and phrases. Textual embeddings are learned dense token representations that capture
Expand Down
4 changes: 4 additions & 0 deletions docs/metrics/confusion-matrix.md
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,10 @@ imbalances.
- :kolena-manual-16: API Reference: [`ConfusionMatrix`][kolena.workflow.plot.ConfusionMatrix]
</div>

!!!example
To see an example of confusion matrix, checkout the
[CIFAR-10 on app.kolena.com/try.](https://app.kolena.io/try/dataset/debugger?datasetId=20&aggregations=N4IgNghgRgpmIC4QEEDGqCuAnCqCeIANCAM4D22qMiIWMJGYALkSBAObt3sRNlaJQHLjB58BSXJhz5WEAG4wc7AJYA7dgFkYTABZkAJjQC2uLGRABfYgAcIOYyUEguFNQYAqWDHoBiKuCMkVwx3AH0mbz0AOkhYeGJ1ADMlGDUqf0CaVEgSEhUklVReFTI1WOg4Vj06En0wILVGMET0sAwDGDCIDFREJIgwEhhrECT%2BUxYkGyUqNSYOamJdFXZdMFXdKdAVtaUASRIAIR0mJURIjBHiEJsAOQhjaiRtSKKAAgBxcwwbKyA&aggregations=N4IgNghgRgpmIC4QAUBOMDGBLAzlg9gHYAEAFALIQar4CUIANCDvgK6oYyIjo6tgAXRiAgBzUelEQB%2BVIlBiJMKTLlIADumx4iwiADcYqMVkKjyMAQAt8AE24BbKjRABfJuojGHOeSAlshLYAKqis1gBiWHD2SAGsQQD6AmHWAHSQsPBMpgBmRjCEnFEx3BiQOHi5WBjSBIQZ0HDC1rw2YLGE-GA5RWCstjCJEKwYiLkQYDgw7iC5sk5CGkachAJiXExWWKJWYDtWS6Dbu0YAkjgAQpYCRogprDNM8eoAchAOXEgWKTXEAOI0VjqNxAA&aggregations=N4IgNghgRgpmIC4QCUYGMJjAAgBQFkI0AnAewEoQAaEAZ1IFdi0ZERiZaGwAXakCAHNBHQRB6liiUEJEwxEqUg4Ys-CADcYxIQEsAdoPwweAC1IATNgFsiZEAF8aABwg7rtaSBGN9FgCrEDGYAYrpwVkg%2BDH4A%2BjxBZgB0kLDwNAYAZtow%2BixhEWxokLS0upm6GDy6pPop0HD8Zhy05mCR%2BtxgGXlgDBYwsRAMaIiZmLQwTiCZkrZ8SM7aLPo8Qqw0prqCpmDbpgugWzvaAJK0AEImPNqICQxTNNHOAHIQ1qxIxgmV2ADiZAYzkcQA&aggregations=N4IgNghgRgpmIC4QDECMACAygYwPYCcZ0AKAWQm31wEoQAaEAZ1wFd9sZERDGWwAXeiAgBzEYRER%2BBRKFHiYk6fi4AzVAH1GeQkIgA3GPlEBLAHYjSMfgAtcAEy4BbClRABfBgAcIxp41kQcVYzewAVfBZbZBM4RyRgllCNfkjbADpIWHgGc1UjGDMOGLiubEhGRhNVE2wpE1wzTOg4IVseOzB4sz4wXKKwFnsYDQgWbERVCDBGGE8QVQIXQSQvIw4zflFOBhsTERswfZsV0D2DowBJRgAha34jRFSWOYZErwA5CCdOJCtU2roADiVBYXg8QA&models=N4IglgJiBcDMA0IDGB7AdgMzAcwK4CcBDAFzHRlEhgFYBfWoA&plots=N4IgHiBcoM4PYFcBOBjAplES0wQGwBcQAaEAazQE9MU8BDGGASwDMmU6Cm4A7AOnoAjNHhIghIzNlyE%2BtBszYcuvAXWGjSAEyYx1eNFqgs6eGGgC%2BpatBDxk6TFs50ADnCY8ipCjZABzJEQeLQB9AiQEAgALNQ0xCVFIEGcCNw8vPkDgsIio2MSxHT1BAyNIEzNLCyA)

## Implementation Details

The implementation of a confusion matrix depends on whether the workflow concerns one or more classes.
Expand Down
4 changes: 4 additions & 0 deletions docs/metrics/difficulty-score.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,10 @@ indicates that models produce the ideal datapoint-level metrics (e.g. lower infe
and a higher difficulty score indicates that models consistently face problems or "difficulty"
(e.g. longer inference time, lower [BLEU scores](./bleu.md), and/or lower [recall](./recall.md)).

!!!example
To see an example of the Difficulty Score in action, checkout the
[Object Detection (COCO 2014) on app.kolena.com/try.](https://app.kolena.io/try/dataset/studio?datasetId=14&models=N4IglgJiBcBMCsAaEBjA9gOwGZgOYFcAnAQwBcxMZRIYAWAX3qA&models=N4IglgJiBcBMAsAaEBjA9gOwGZgOYFcAnAQwBcxMZRIZ4BfOoA&modelResultNullFilters=N4IglgJiBcBMCsAaEBjA9gOwGZgOYFcAnAQwBcxMZRIYAWAX2TAGcB9DfAG05i2M%2BYBTekA&modelResultNullFilters=N4IglgJiBcBMAsAaEBjA9gOwGZgOYFcAnAQwBcxMZRIZ4BfZMAZwH0N8AbDmLYjpgKZ0gA&sortByType=datapoint&sortBy=_kolena.extracted.difficulty_score&filters=datapoint._kolena.extracted.difficulty_score%3AN4IgdgrgtgRgpgJwPoIIZgOZxALlFASzFwAYA6ATgBoQpUAPXARgF8aB7ABwBcD2wAzrlAI4WekjrcAxgAtcAM1QAbAXBqjxSBctQYhOECBpEAbojWKValiyA%3Anr)

!!! note
For Kolena to calculate the `datapoint.difficulty_score` you must have:

Expand Down
4 changes: 4 additions & 0 deletions docs/metrics/f1-score.md
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,10 @@ object detection, semantic segmentation, and information retrieval.
- :kolena-manual-16: API Reference: [`f1_score`][kolena.metrics.f1_score]
</div>

!!!example
To see an example of of the F1 Score, checkout the
[Object Detection (COCO 2014) on app.kolena.com/try.](https://app.kolena.io/try/dataset/standards?datasetId=14&models=N4IglgJiBcBMCsAaEBjA9gOwGZgOYFcAnAQwBcxMZRIYAWAX3qA&models=N4IglgJiBcBMAsAaEBjA9gOwGZgOYFcAnAQwBcxMZRIZ4BfOoA&metricGroupVisibilities=N4IgbglgzhBGA2BTEAuALgJwK6IDQgFtFMIBjKVAbVEhgWXW0QF9cbo4lVMdX26ujXm3Ad63JswC6zIA)

## Implementation Details

Using [TP / FP / FN / TN](./tp-fp-fn-tn.md), we can define [precision](./precision.md) and [recall](./recall.md).
Expand Down
4 changes: 4 additions & 0 deletions docs/metrics/mean-absolute-error.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,10 @@ MAE represents the mean of the absolute differences between predicted and actual
treating each discrepancy equally. A large value is indicative of poor performance, and communicates
how much on average a prediction will deviate from the actual value in the units of the ground truth.

!!!example
To see and example of Mean Absolute Error, checkout the
[STS Benchmark on app.kolena.com/try.](https://app.kolena.io/try/dataset/standards?datasetId=12&models=N4IglgJiBcCMDsAaEBjA9gOwGZgOYFcAnAQwBcxMZRIZYBfOoA&models=N4IglgJiBcCMBsAaEBjA9gOwGZgOYFcAnAQwBcxMZRIZYBfOoA&metricGroupVisibilities=N4IgbglgzhBGA2BTEAuALgJwK6IDQgFtFMIBjKVAbVEhgWXW0QF9cbo4lVMdX26ujXm3Ad63JswC6zIA)

## Implementation Details

MAE is calculated by taking the average of the absolute differences between the predicted values and the actual values.
Expand Down
4 changes: 4 additions & 0 deletions docs/metrics/pearson-correlation.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,10 @@ positive linear correlation, where as one variable increases, the other also inc
to -1 signifies a strong negative linear correlation, meaning as one variable increases, the other decreases
proportionally. A value of 0 indicates no linear correlation between the variables.

!!!example
To see an example of the Pearson Correlation, checkout the
[STS Benchmark on app.kolena.com/try.](https://app.kolena.io/try/dataset/standards?datasetId=12&models=N4IglgJiBcCMDsAaEBjA9gOwGZgOYFcAnAQwBcxMZRIZYBfOoA&models=N4IglgJiBcCMBsAaEBjA9gOwGZgOYFcAnAQwBcxMZRIZYBfOoA&metricGroupVisibilities=N4IgbglgzhBGA2BTEAuALgJwK6IDQgFtFMIBjKVAbVEhgWXW0QF9cbo4lVMdX26ujXm3Ad63JswC6zIA)

## Implementation Details

The correlation coefficient is calculated by dividing the covariance of $x$ and $y$ by their individual standard
Expand Down
5 changes: 5 additions & 0 deletions docs/metrics/pr-curve.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,11 @@ thresholds, showing a trade-off of how precision and recall values change when a
- :kolena-manual-16: API Reference: [`CurvePlot`][kolena.workflow.plot.CurvePlot]
</div>

!!!example
To see an example of the PR curve, checkout the
[Object Detection (COCO 2014) on app.kolena.com/try](https://app.kolena.io/try/dataset/debugger?datasetId=14&aggregations=N4IgNghgRgpmIC4QAUBOMDGBLAzlg9gHYgA0IO%2BArqhjIiOjpWAC6kgQDmn6nEL%2BVIlBceMPgKFIADumx4i7CADcYqLlkKcAsjBYALfABN6AWywZU%2BEAF8y0iOtM5hIAGaEAYljgmkngDl2N2lvX3pPZHYWUJ8wPxAAFSiyHAxBGDD4%2BjSM9khYMCyEgrhbMjdBU356aTVaQhYuOjJ9LE59MHb9NgRQNo61AEkcACE9FjVEFlRKGDsQHippAIhTOiRdGYsAAgBxK0ppWyA&aggregations=N4IgNghgRgpmIC4QCUYGMJngGhAZwHsBXAJzRkRBJjyLABcRcIBzF6liegkxUV9jE7deSahixMQEAG4wSrAJYA7FgFkY9ABYEAJpQC2itCQIgAvrgAOEBQbx8QAM2UAxRXH1JXAOSlOrd09KVwAFKXpAjzAvEAAVcNw8NB4YIJjKZNSpSFgwdNjcuAtcJx4DLkoreXJlelYKXC1FFi0wFq1GBFBm1vkASTwAIU16eUR6EiIYSxB2YisfCAMKJA1J4wACAHFTIisLIA&aggregations=N4IgNghgRgpmIC4QDECMACAygYwPYCcYQAaEAZ1wFd9silCzKwAXEkCAcw8I4mYMShO3GL375EIAGaoA%2BmTyE2EAG4x8nAJYA7DgFkYzABa4AJpIC2m7PlwgAvqQAOEDRbKDp25JrjmkyABybFJOPn6SyAAKbMxhvmD%2BIAAqMaQKBDDhiZIZSqSQsGDZSYVwDqRSBBZ8kk7qtNrMnESkRpocRmAdRqwIoO2d6gCSZABChszqiMz4lDCOINxUToEQFnQgBrPW6ADitpRODkA&aggregations=N4IgNghgRgpmIC4QFkYQHYAIByMAumAwgPYBOpMAxnujAM50gA0IdxArqZTIiBXezB5mICAHMxFMRDxleAWzToRABwikI8xglABrGAE9eAfV3EwMdBAB0AExikAlgDcYt67TzHKZCtVoMIAC%2BLABmZPIyiOiCYCwAFo5i8WBJ8cI6IInJDgCSdABC%2BHgOiHik7DAhIJIcKtiaPEio5Y6UmADipHXBQA&models=N4IglgJiBcBMCsAaEBjA9gOwGZgOYFcAnAQwBcxMZRIYAWAX3qA&modelResultNullFilters=N4IglgJiBcBMCsAaEBjA9gOwGZgOYFcAnAQwBcxMZRIYAWAX2TAGcB9DfAG05i2M%2BYBTekA)
on Kolena's public dataset.

## Implementation Details

The curve’s points (precisions and recalls) are calculated with a varying threshold, and made into points (precision
Expand Down
4 changes: 4 additions & 0 deletions docs/metrics/roc-curve.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,10 @@ classification models by using the [true positive rate (TPR)](./recall.md) and t
[false positive rate (FPR)](./fpr.md). The curve is built with the TPR on the y-axis and the FPR on the x-axis computed
across many thresholds, showing a trade-off of how TPR and FPR values change when a classification threshold changes.

!!!example
To see an example of the ROC cureve, chekcout the
[CIFAR-10 on app.kolena.com/try.](https://app.kolena.io/try/dataset/debugger?datasetId=20&aggregations=N4IgNghgRgpmIC4QEEDGqCuAnCqCeIANCAM4D22qMiIWMJGYALkSBAObt3sRNlaJQHLjB58BSXJhz5WEAG4wc7AJYA7dgFkYTABZkAJjQC2uLGRABfYgAcIOYyUEguFNQYAqWDHoBiKuCMkVwx3AH0mbz0AOkhYeGJ1ADMlGDUqf0CaVEgSEhUklVReFTI1WOg4Vj06En0wILVGMET0sAwDGDCIDFREJIgwEhhrECT%2BUxYkGyUqNSYOamJdFXZdMFXdKdAVtaUASRIAIR0mJURIjBHiEJsAOQhjaiRtSKKAAgBxcwwbKyA&aggregations=N4IgNghgRgpmIC4QAUBOMDGBLAzlg9gHYAEAFALIQar4CUIANCDvgK6oYyIjo6tgAXRiAgBzUelEQB%2BVIlBiJMKTLlIADumx4iwiADcYqMVkKjyMAQAt8AE24BbKjRABfJuojGHOeSAlshLYAKqis1gBiWHD2SAGsQQD6AmHWAHSQsPBMpgBmRjCEnFEx3BiQOHi5WBjSBIQZ0HDC1rw2YLGE-GA5RWCstjCJEKwYiLkQYDgw7iC5sk5CGkachAJiXExWWKJWYDtWS6Dbu0YAkjgAQpYCRogprDNM8eoAchAOXEgWKTXEAOI0VjqNxAA&aggregations=N4IgNghgRgpmIC4QCUYGMJjAAgBQFkI0AnAewEoQAaEAZ1IFdi0ZERiZaGwAXakCAHNBHQRB6liiUEJEwxEqUg4Ys-CADcYxIQEsAdoPwweAC1IATNgFsiZEAF8aABwg7rtaSBGN9FgCrEDGYAYrpwVkg%2BDH4A%2BjxBZgB0kLDwNAYAZtow%2BixhEWxokLS0upm6GDy6pPop0HD8Zhy05mCR%2BtxgGXlgDBYwsRAMaIiZmLQwTiCZkrZ8SM7aLPo8Qqw0prqCpmDbpgugWzvaAJK0AEImPNqICQxTNNHOAHIQ1qxIxgmV2ADiZAYzkcQA&aggregations=N4IgNghgRgpmIC4QDECMACAygYwPYCcZ0AKAWQm31wEoQAaEAZ1wFd9sZERDGWwAXeiAgBzEYRER%2BBRKFHiYk6fi4AzVAH1GeQkIgA3GPlEBLAHYjSMfgAtcAEy4BbClRABfBgAcIxp41kQcVYzewAVfBZbZBM4RyRgllCNfkjbADpIWHgGc1UjGDMOGLiubEhGRhNVE2wpE1wzTOg4IVseOzB4sz4wXKKwFnsYDQgWbERVCDBGGE8QVQIXQSQvIw4zflFOBhsTERswfZsV0D2DowBJRgAha34jRFSWOYZErwA5CCdOJCtU2roADiVBYXg8QA&models=N4IglgJiBcAsA0IDGB7AdgMzAcwK4CcBDAFzHRlEhgFYBfWoA&models=N4IglgJiBcDMA0IDGB7AdgMzAcwK4CcBDAFzHRlEhgFYBfWoA)

!!! info "Guides: TPR and FPR"

The TPR is also known as sensitivity or recall, and it represents the proportion of true positive inferences
Expand Down
5 changes: 5 additions & 0 deletions docs/metrics/root-mean-squared-error.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,11 @@ interpreting the magnitude of prediction errors and penalizing larger discrepanc
Like [MSE](./mean-squared-error.md) and [MAE](./mean-absolute-error.md) a large value is indicative of
poor performance.

!!!example
To see and example of the Root Mean Squared Error, checkout the
[STS Benchmark on app.kolena.com/try.](https://app.kolena.io/try/dataset/standards?datasetId=12&models=N4IglgJiBcCMDsAaEBjA9gOwGZgOYFcAnAQwBcxMZRIZYBfOoA&models=N4IglgJiBcCMBsAaEBjA9gOwGZgOYFcAnAQwBcxMZRIZYBfOoA&metricGroupVisibilities=N4IgbglgzhBGA2BTEAuALgJwK6IDQgFtFMIBjKVAbVEhgWXW0QF9cbo4lVMdX26ujXm3Ad63JswC6zIA)
on Kolena's public dataset.

## Implementation Details

RMSE is calculated by first computing the mean of the squared differences between the predicted values and the actual
Expand Down
4 changes: 4 additions & 0 deletions docs/metrics/spearman-correlation.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,10 @@ strong positive monotonic correlation, where as one variable increases, the othe
signifies a strong negative monotonic correlation, meaning as one variable increases, the other decreases. A value of
0 indicates no monotonic correlation between the variables.

!!!example
To see an example of the Spearman's Correlation, checkout the
[STS Benchmark on app.kolena.com/try.](https://app.kolena.io/try/dataset/standards?datasetId=12&models=N4IglgJiBcCMDsAaEBjA9gOwGZgOYFcAnAQwBcxMZRIZYBfOoA&models=N4IglgJiBcCMBsAaEBjA9gOwGZgOYFcAnAQwBcxMZRIZYBfOoA&metricGroupVisibilities=N4IgbglgzhBGA2BTEAuALgJwK6IDQgFtFMIBjKVAbVEhgWXW0QF9cbo4lVMdX26ujXm3Ad63JswC6zIA)

## Implementation Details

The Spearman's Rank Correlation is calculated by ranking the data points and then applying
Expand Down
4 changes: 4 additions & 0 deletions docs/metrics/wer-cer-mer.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,10 @@ the similarity between reference and candidate texts, with zero being a perfect
error rate can be infinitely high, match error rate is always between 0 and 1. Each of these metrics
have their nuances that reveal different errors within texts.

!!!example
To see and example of WER, CER and MER, checkout the
[LibriSpeech on app.kolena.com/try.](https://app.kolena.io/try/dataset/standards?datasetId=22&models=N4IglgJiBcBsAcAaEBjA9gOwGZgOYFcAnAQwBcxMZRIYBGAX3qA&models=N4IglgJiBcBsDsAaEBjA9gOwGZgOYFcAnAQwBcxMZRIYBGAX3qA&models=N4IglgJiBcBssBoQGMD2A7AZmA5gVwCcBDAFzAxlEhgEYBfOoA&metricGroupVisibilities=N4IgbglgzhBGA2BTEAuALgJwK6IDQgFtFMIBjKVAbVEhgWXW0QF9cbo4lVMdX26ujXgF1mQA)

## Substitutions, Deletions, and Insertions

The building blocks of each metric include substitution, deletion, and insertion errors. These errors reveal different
Expand Down

0 comments on commit 208f9a9

Please sign in to comment.