Skip to content

kdorichev/Text-to-Speech

 
 

Repository files navigation

NVIDIA Deep Learning Examples for Tensor Cores

Introduction

This repository provides State-of-the-Art Deep Learning examples that are easy to train and deploy, achieving the best reproducible accuracy and performance with NVIDIA CUDA-X software stack running on NVIDIA Volta, Turing and Ampere GPUs.

NVIDIA GPU Cloud (NGC) Container Registry

These examples, along with our NVIDIA deep learning software stack, are provided in a monthly updated Docker container on the NGC container registry (https://ngc.nvidia.com). These containers include:

  • The latest NVIDIA examples from this repository
  • The latest NVIDIA contributions shared upstream to the respective framework
  • The latest NVIDIA Deep Learning software libraries, such as cuDNN, NCCL, cuBLAS, etc. which have all been through a rigorous monthly quality assurance process to ensure that they provide the best possible performance
  • Monthly release notes for each of the NVIDIA optimized containers

Text to Speech

Models Framework A100 AMP Multi-GPU Multi-Node TRT ONNX Triton TF-TRT NB
FastPitch PyTorch Yes Yes Yes - - - - - -
Tacotron 2 and WaveGlow PyTorch Yes Yes Yes - Yes Yes Yes - -

NVIDIA support

In each of the network READMEs, we indicate the level of support that will be provided. The range is from ongoing updates and improvements to a point-in-time release for thought leadership.

Feedback / Contributions

We're posting these examples on GitHub to better support the community, facilitate feedback, as well as collect and implement contributions using GitHub Issues and pull requests. We welcome all contributions!

Known issues

In each of the network READMEs, we indicate any known issues and encourage the community to provide feedback.

About

Text-to-Speech models based on the NVIDIA's examples.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 52.6%
  • Python 34.4%
  • Cuda 5.6%
  • Jupyter Notebook 2.9%
  • Shell 2.9%
  • CMake 1.5%
  • Dockerfile 0.1%