A time series anomaly detection library featuring cutting-edge algorithms and advanced functionalities.It allows the unification of more than 50 algorithms from the literature distributed across different libraries, in addition to some of its own.
In detail, the package provides:
Name | Function |
---|---|
ALAD | anomaly_lib.deep_learning.alad.ALAD |
AnoGAN | anomaly_lib.deep_learning.anogan.AnoGAN |
AutoEncoder | anomaly_lib.deep_learning.auto_encoder.AutoEncoder |
DeepSVDD | anomaly_lib.deep_learning.deep_svdd.DeepSVDD |
MO_GAAL | anomaly_lib.deep_learning.mo_gaal.MO_GAAL |
SO_GAAL | anomaly_lib.deep_learning.so_gaal.SO_GAAL |
VAE | anomaly_lib.deep_learning.vae.VAE |
Name | Function |
---|---|
DecisionTreeClassifierClassOD | anomaly_lib.machine_learning.decision_tree_classifier.DecisionTreeClassifierClassOD |
ECOD | anomaly_lib.machine_learning.ecod.ECOD |
IForest | anomaly_lib.machine_learning.iforest.IForest |
KNN | anomaly_lib.machine_learning.knn.KNN |
LOF | anomaly_lib.machine_learning.lof.LOF |
MLPClassOD | anomaly_lib.machine_learning.mlp_classifier.MLPClassOD |
MultinomialNBClassOD | anomaly_lib.machine_learning.multinomial_nb.MultinomialNBClassOD |
GaussianNBClassOD | anomaly_lib.machine_learning.naive_bayes.GaussianNBClassOD |
OCSVM | anomaly_lib.machine_learning.ocsvm.OCSVM |
RandomForestClassOD | anomaly_lib.machine_learning.random_forest_classifier.RandomForestClassOD |
SVMClassOD | anomaly_lib.machine_learning.svm.SVMClassOD |
Name | Function |
---|---|
ABOD | anomaly_lib.statistical.abod.ABOD |
CBLOF | anomaly_lib.statistical.cblof.CBLOF |
CD | anomaly_lib.statistical.cd.CD |
COF | anomaly_lib.statistical.cof.COF |
LUNAR | anomaly_lib.statistical.lunar.LUNAR |
COPOD | anomaly_lib.statistical.copod.COPOD |
FeatureBagging | anomaly_lib.statistical.feature_bagging.FeatureBagging |
GMM | anomaly_lib.statistical.gmm.GMM |
HBOS | anomaly_lib.statistical.hbos.HBOS |
INNE | anomaly_lib.statistical.inne.INNE |
KDE | anomaly_lib.statistical.kde.KDE |
KPCA | anomaly_lib.statistical.kpca.KPCA |
LMDD | anomaly_lib.statistical.lmdd.LMDD |
LOCI | anomaly_lib.statistical.loci.LOCI |
LODA | anomaly_lib.statistical.loda.LODA |
LSCP | anomaly_lib.statistical.lscp.LSCP |
MAD | anomaly_lib.statistical.mad.MAD |
MCD | anomaly_lib.statistical.mcd.MCD |
PCA | anomaly_lib.statistical.pca.PCA |
QMCD | anomaly_lib.statistical.qmcd.QMCD |
RGraph | anomaly_lib.statistical.rgraph.RGraph |
ROD | anomaly_lib.statistical.rod.ROD |
Sampling | anomaly_lib.statistical.sampling.Sampling |
SOD | anomaly_lib.statistical.sod.SOD |
SOS | anomaly_lib.statistical.sos.SOS |
XGBOD | anomaly_lib.statistical.xgbod.XGBOD |
MatrixProfile | anomaly_lib.statistical.matrixprofile.MatrixProfile |
ARIMA | anomaly_lib.statistical.arima.ARIMA |
SARIMAX | anomaly_lib.statistical.sarimax.SARIMAX |
VARMAX | anomaly_lib.statistical.varmax.VARMAX |
HoltWinters | anomaly_lib.statistical.holt_winters.HoltWinters |
SingleExponentialSmoothing | anomaly_lib.statistical.singleExponentialSmoothing.SingleExponentialSmoothing |
You can find all documentation in Web Docs.