This repository has been archived by the owner on Mar 4, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
Buchberger's algorithm in Common Lisp. Moved to https://git.sr.ht/~jmbr/cl-buchberger
jmbr/cl-buchberger
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
cl-buchberger ============= Juan M. Bello Rivas <jmbr@superadditive.com> June 2009 image::images/cl-buchberger.png[Screenshot] Overview -------- cl-buchberger is a Common Lisp implementation of Buchberger's algorithm for the computation of Gröbner bases. Currently this package can compute Gröbner bases of ideals in multivariate polynomial rings over the rationals. Availability ------------ Download the latest version of this package from http://github.com/jmbr/cl-buchberger/tarball/master Portability ----------- The code has been tested under 1. ABCL 0.16.0-dev 2. CLISP 2.47 3. ECL 9.6.1 4. SBCL 1.0.29 License ------- cl-buchberger is released under the GNU GPLv2. Usage ----- Loading the package ~~~~~~~~~~~~~~~~~~~ You need ASDF installed in your system. To load cl-buchberger, write: ------------------------------------------------------ CL-USER> (asdf:operate 'asdf:load-op :cl-buchberger) NIL CL-USER> (use-package :cl-buchberger) T ------------------------------------------------------ Defining a polynomial ring ~~~~~~~~~~~~~~~~~~~~~~~~~~ There's a default ring which is the ring of polynomials on X, Y, Z over the rationals. To define custom polynomial rings use: --------------------------------------------------------- CL-USER> (make-instance 'polynomial-ring :variables (list 'x 'y 'z 'u 'w 'r 's 't)) #<POLYNOMIAL-RING X, Y, Z, U, W, R, S, T over RATIONAL> --------------------------------------------------------- To change the default ring just bind \*RING\* to whatever you want: --------------------------------------------------------------------- CL-USER> (defparameter *ring* (make-instance 'polynomial-ring :variables (list 'x 'y)) "QQ[X, Y]") *RING* CL-USER> *ring* #<POLYNOMIAL-RING X, Y over RATIONAL> --------------------------------------------------------------------- Defining polynomials ~~~~~~~~~~~~~~~~~~~~ Polynomials are defined using a list of terms where each term is a list with the coefficient as its first term and where the remaining elements are variable exponents. For example: (1 1 2 3) would correspond to the term $$`xy^2z^3`$$ Thus, to create a polynomial write: ------------------------------------------------------------------- CL-USER> (defparameter *l* (make-polynomial '((1 3 0) (-2 1 1)))) *L* CL-USER> *l* #<POLYNOMIAL x^3 - 2xy> CL-USER> (defparameter *m* (make-polynomial '((3 4 1) (1 2 0)))) *M* CL-USER> *m* #<POLYNOMIAL 3x^4y + x^2> ------------------------------------------------------------------- Polynomial arithmetic ~~~~~~~~~~~~~~~~~~~~~ Use the generic functions RING+, RING-, RING*, and RING/ for the usual arithmetic operations. The function RING/ is the multivariate polynomial division algorithm and takes a polynomial and a sequence of divisors to produce a sequence of quotients and a remainder. To set the default monomial ordering, bind \*MONOMIAL-ORDERING\* to the relevant function (which defaults to LEX>). For example: -------------------------------------------------------- CL-USER> (defparameter *monomial-ordering* #'grevlex>) *MONOMIAL-ORDERING* -------------------------------------------------------- Also, you can use the macro WITH-MONOMIAL-ORDERING to define the current monomial ordering as in: ------------------------------------------- CL-USER> (with-monomial-ordering #'grlex> (ring/ *m* *l*)) #(#<POLYNOMIAL 3xy>) #<POLYNOMIAL 6x^2y^2 + x^2> ------------------------------------------- Computing Gröbner bases ~~~~~~~~~~~~~~~~~~~~~~~ The functions GROEBNER and REDUCED-GROEBNER compute Gröbner bases and reduced Gröbner bases respectively. Both of them take a sequence of polynomials as parameter. An alternative is to construct a polynomial ideal and obtain its reduced Gröbner basis using the BASIS generic function. For example: -------------------------------------------------------------------------------- CL-USER> (defparameter *katsura-3* (make-ideal (list (make-polynomial '((1 1 0 0) (2 0 1 0) (2 0 0 1) (-1 0 0 0))) (make-polynomial '((1 2 0 0) (-1 1 0 0) (2 0 2 0) (2 0 0 2))) (make-polynomial '((2 1 1 0) (2 0 1 1) (-1 0 1 0))))) "Katsura-3 over QQ[x, y, z] (default ring)") *KATSURA-3* CL-USER> *katsura-3* #<IDEAL :RING #<POLYNOMIAL-RING :VARIABLES (X Y Z) :BASE-FIELD RATIONAL> :GENERATORS #(#<POLYNOMIAL x + 2y + 2z - 1> #<POLYNOMIAL x^2 - x + 2y^2 + 2z^2> #<POLYNOMIAL 2xy + 2yz - y>)> CL-USER> (basis *katsura-3*) #(#<POLYNOMIAL x - 60z^3 + 158/7z^2 + 8/7z - 1> #<POLYNOMIAL y + 30z^3 - 79/7z^2 + 3/7z> #<POLYNOMIAL z^4 - 10/21z^3 + 1/84z^2 + 1/84z>) -------------------------------------------------------------------------------- Bug reports ----------- There's a bug tracker available at http://github.com/jmbr/cl-buchberger/issues
About
Buchberger's algorithm in Common Lisp. Moved to https://git.sr.ht/~jmbr/cl-buchberger
Topics
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published