-
Notifications
You must be signed in to change notification settings - Fork 9
/
train.py
274 lines (217 loc) · 10.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# Adapted from https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html
import argparse
import random
import sys
import time
from collections import namedtuple
from pathlib import Path
# Prevent numpy from using up all cpu
import os
os.environ['MKL_NUM_THREADS'] = '1' # pylint: disable=wrong-import-position
import torch
import torch.optim as optim
from torch.nn.functional import smooth_l1_loss
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
import utils
torch.backends.cudnn.benchmark = True
Transition = namedtuple('Transition', ('state', 'action', 'reward', 'ministeps', 'next_state'))
class ReplayBuffer:
def __init__(self, capacity):
self.capacity = capacity
self.buffer = []
self.position = 0
def push(self, *args):
if len(self.buffer) < self.capacity:
self.buffer.append(None)
self.buffer[self.position] = Transition(*args)
self.position = (self.position + 1) % self.capacity
def sample(self, batch_size):
transitions = random.sample(self.buffer, batch_size)
return Transition(*zip(*transitions))
def __len__(self):
return len(self.buffer)
def train(cfg, policy_net, target_net, optimizer, batch, transform_func):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
state_batch = torch.cat([transform_func(s) for s in batch.state]).to(device) # (32, 3, 96, 96)
action_batch = torch.tensor(batch.action, dtype=torch.long).to(device) # (32,)
reward_batch = torch.tensor(batch.reward, dtype=torch.float32).to(device) # (32,)
ministeps_batch = torch.tensor(batch.ministeps, dtype=torch.float32).to(device) # (32,)
non_final_next_states = torch.cat([transform_func(s) for s in batch.next_state if s is not None]).to(device, non_blocking=True) # (?32, 3, 96, 96)
output = policy_net(state_batch) # (32, 2, 96, 96)
state_action_values = output.view(cfg.batch_size, -1).gather(1, action_batch.unsqueeze(1)).squeeze(1) # (32,)
next_state_values = torch.zeros(cfg.batch_size, dtype=torch.float32, device=device) # (32,)
non_final_mask = torch.tensor(tuple(map(lambda s: s is not None, batch.next_state)), dtype=torch.bool, device=device) # (32,)
if cfg.use_double_dqn:
with torch.no_grad():
best_action = policy_net(non_final_next_states).view(non_final_next_states.size(0), -1).max(1)[1].view(non_final_next_states.size(0), 1) # (32?, 1)
next_state_values[non_final_mask] = target_net(non_final_next_states).view(non_final_next_states.size(0), -1).gather(1, best_action).view(-1) # (32?,)
else:
next_state_values[non_final_mask] = target_net(non_final_next_states).view(non_final_next_states.size(0), -1).max(1)[0].detach() # (32,)
expected_state_action_values = (reward_batch + torch.pow(cfg.discount_factor, ministeps_batch) * next_state_values) # (32,)
td_error = torch.abs(state_action_values - expected_state_action_values).detach() # (32,)
loss = smooth_l1_loss(state_action_values, expected_state_action_values)
optimizer.zero_grad()
loss.backward()
if cfg.grad_norm_clipping is not None:
torch.nn.utils.clip_grad_norm_(policy_net.parameters(), cfg.grad_norm_clipping)
optimizer.step()
train_info = {}
train_info['q_value_min'] = output.min().item()
train_info['q_value_max'] = output.max().item()
train_info['td_error'] = td_error.mean()
train_info['loss'] = loss
return train_info
def main(cfg):
# Set up logging and checkpointing
log_dir = Path(cfg.log_dir)
checkpoint_dir = Path(cfg.checkpoint_dir)
print('log_dir: {}'.format(log_dir))
print('checkpoint_dir: {}'.format(checkpoint_dir))
# Create environment
kwargs = {}
if sys.platform == 'darwin':
kwargs['use_gui'] = True
env = utils.get_env_from_cfg(cfg, **kwargs)
# Policy
policy = utils.get_policy_from_cfg(cfg, env.get_action_space(), train=True)
# Optimizer
optimizer = optim.SGD(policy.policy_net.parameters(), lr=cfg.learning_rate, momentum=0.9, weight_decay=cfg.weight_decay)
# Replay buffer
replay_buffer = ReplayBuffer(cfg.replay_buffer_size)
# Resume if applicable
start_timestep = 0
episode = 0
if cfg.checkpoint_path is not None:
checkpoint = torch.load(cfg.checkpoint_path)
start_timestep = checkpoint['timestep']
episode = checkpoint['episode']
optimizer.load_state_dict(checkpoint['optimizer'])
replay_buffer = checkpoint['replay_buffer']
print("=> loaded checkpoint '{}' (timestep {})".format(cfg.checkpoint_path, start_timestep))
# Target net
target_net = policy.build_network()
target_net.load_state_dict(policy.policy_net.state_dict())
target_net.eval()
# Logging
train_summary_writer = SummaryWriter(log_dir=str(log_dir / 'train'))
visualization_summary_writer = SummaryWriter(log_dir=str(log_dir / 'visualization'))
meters = Meters()
state = env.reset()
total_timesteps_with_warm_up = cfg.learning_starts + cfg.total_timesteps
for timestep in tqdm(range(start_timestep, total_timesteps_with_warm_up),
initial=start_timestep, total=total_timesteps_with_warm_up, file=sys.stdout):
start_time = time.time()
# Select an action
if cfg.exploration_timesteps > 0:
exploration_eps = 1 - min(max(timestep - cfg.learning_starts, 0) / cfg.exploration_timesteps, 1) * (1 - cfg.final_exploration)
else:
exploration_eps = cfg.final_exploration
action, _ = policy.step(state, exploration_eps=exploration_eps)
# Step the simulation
next_state, reward, done, info = env.step(action)
ministeps = info['ministeps']
# Store in buffer
replay_buffer.push(state, action, reward, ministeps, next_state)
state = next_state
# Reset if episode ended
if done:
state = env.reset()
episode += 1
# Train network
if timestep >= cfg.learning_starts:
batch = replay_buffer.sample(cfg.batch_size)
train_info = train(cfg, policy.policy_net, target_net, optimizer, batch, policy.apply_transform)
# Update target network
if (timestep + 1) % cfg.target_update_freq == 0:
target_net.load_state_dict(policy.policy_net.state_dict())
step_time = time.time() - start_time
################################################################################
# Logging
# Meters
meters.update('step_time', step_time)
if timestep >= cfg.learning_starts:
for name, val in train_info.items():
meters.update(name, val)
if done:
for name in meters.get_names():
train_summary_writer.add_scalar(name, meters.avg(name), timestep + 1)
eta_seconds = meters.avg('step_time') * (total_timesteps_with_warm_up - timestep)
meters.reset()
train_summary_writer.add_scalar('episodes', episode, timestep + 1)
train_summary_writer.add_scalar('eta_hours', eta_seconds / 3600, timestep + 1)
for name in ['cumulative_cubes', 'cumulative_distance', 'cumulative_reward']:
train_summary_writer.add_scalar(name, info[name], timestep + 1)
# Visualize Q-network outputs
if timestep >= cfg.learning_starts and not cfg.use_steering_commands:
random_state = random.choice(replay_buffer.buffer).state
_, info = policy.step(random_state, debug=True)
output = info['output'].cpu().numpy()
visualization = utils.get_state_and_output_visualization(random_state, output).transpose((2, 0, 1))
visualization_summary_writer.add_image('output', visualization, timestep + 1)
################################################################################
# Checkpointing
if (timestep + 1) % cfg.checkpoint_freq == 0 or timestep + 1 == total_timesteps_with_warm_up:
# Save model
if not checkpoint_dir.exists():
checkpoint_dir.mkdir(parents=True, exist_ok=True)
model_name = 'model_{:08d}.pth.tar'.format(timestep + 1)
torch.save({
'timestep': timestep + 1,
'state_dict': policy.policy_net.state_dict(),
}, str(checkpoint_dir / model_name))
# Save checkpoint
checkpoint_name = 'checkpoint_{:08d}.pth.tar'.format(timestep + 1)
torch.save({
'timestep': timestep + 1,
'episode': episode,
'optimizer': optimizer.state_dict(),
'replay_buffer': replay_buffer,
}, str(checkpoint_dir / checkpoint_name))
# Save updated config file
cfg.model_path = str(checkpoint_dir / model_name)
cfg.checkpoint_path = str(checkpoint_dir / checkpoint_name)
utils.write_config(cfg, log_dir / 'config.yml')
# Remove old checkpoint
old_checkpoint_path = checkpoint_dir / 'checkpoint_{:08d}.pth.tar'.format((timestep + 1) - cfg.checkpoint_freq)
if old_checkpoint_path.exists():
old_checkpoint_path.unlink()
env.close()
# Create file to indicate training completed
(log_dir / 'success').touch()
class AverageMeter:
def __init__(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class Meters:
def __init__(self):
self.meters = {}
def get_names(self):
return self.meters.keys()
def reset(self):
for _, meter in self.meters.items():
meter.reset()
def update(self, name, val):
if name not in self.meters:
self.meters[name] = AverageMeter()
self.meters[name].update(val)
def avg(self, name):
return self.meters[name].avg
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('config_path')
config_path = parser.parse_args().config_path
config_path = utils.setup_run(config_path)
main(utils.read_config(config_path))