Product Categorization with Machine Learning
├── LICENSE
├── Makefile <- Makefile with commands like `make data` or `make train`
├── README.md <- The top-level README for developers using this project.
├── data
│ ├── external <- Data from third party sources.
│ ├── interim <- Intermediate data that has been transformed.
│ ├── processed <- The final, canonical data sets for modeling.
│ └── raw <- The original, immutable data dump.
│
├── docs <- A default Sphinx project; see sphinx-doc.org for details
│
├── models <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
│ the creator's initials, and a short `-` delimited description, e.g.
│ `1.0-jqp-initial-data-exploration`.
│
├── references <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports <- Generated analysis as HTML, PDF, LaTeX, etc.
│ └── figures <- Generated graphics and figures to be used in reporting
│
├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
│ generated with `pip freeze > requirements.txt`
│
├── scraping
│ └── scraping
| └── spiders <- Crawlers scripts.
|
|
├── src <- Source code for use in this project.
│ ├── __init__.py <- Makes src a Python module
│ │
│ ├── data <- Scripts to download or generate data
│ │ └── make_dataset.py
│ │
│ ├── features <- Scripts to turn raw data into features for modeling
│ │ └── build_features.py
│ │
│ ├── models <- Scripts to train models and then use trained models to make
│ │ │ predictions
│ │ ├── predict_model.py
│ │ └── train_model.py
│ │
│ └── visualization <- Scripts to create exploratory and results oriented visualizations
│ └── visualize.py
│
├── tests <- Automated tests
└── tox.ini <- tox file with settings for running tox; see tox.testrun.org
docker-compose build
docker-compose run web make test
The spider script collect product info from Petlove's site.
After spider script has finished, a dataset.csv
file will be generated to data/external
directory.
docker-compose run web make crawl_petlove
Run docker container
docker-compose up -d
Make HTTP request using curl:
curl -d '{"name": "Ração Premier Pet Formula Cães Adultos Raças Pequenas","description": "Indicada para cães adultos de raça pequena, Ração Sabor Frango, Contem apenas ingredientes nobres e selecionados sob rigoroso controle de qualidade, Pelagem bonita e saudável, rico em acido graxo essenciais, Omega 3 e Omega 6, Ajuda no equilibrio intestinal, combinação de ingredientes de alta digestibilidade, fibras alimentares e prebioticos, Enriquecido com vitaminas e minerais que proporcional maior saúde e vitalidade"}' -H "Content-Type: application/json" -X POST http://localhost:5000/api/predict
Expected response:
{
"prediction": {
"category": "Cachorro, Rações, Ração Seca"
}
}
docker run -it -v $PWD:/opt/nb -p 8888:8888 felixleung/auto-sklearn \
/bin/bash -c "mkdir -p /opt/nb && jupyter notebook --notebook-dir=/opt/nb --ip='0.0.0.0' --port=8888 --no-browser --allow-root"
- A public dataset of
1980 products
with88 categories
extracted fromPetlove
, each product hasname
,description
andcategory
- https://s3.amazonaws.com/product-categorization/dataset.csv