Skip to content

An awesome vehicle dataset for GNSS/INS integration applications

Notifications You must be signed in to change notification settings

i2Nav-WHU/awesome-gins-datasets

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Awesome GINS Dataset

An awesome vehicle GINS dataset for GNSS/INS integration applications

This repository provide an awesome GINS dataset for GNSS/INS integration applications. The biggest feature of the dataset is that four different grade of MEMS IMUs are included, which provide an opportunity for the researchers to comprehensively evaluate their algorithms.

The dataset was collected in an open-sky industrial area, where the GNSS RTK was well satisfied. The duration of the whole dataset is 1617 seconds, including the raw IMU data, GNSS RTK positioning results, and the ground-truth for each IMU.

Authors: Hailiang Tang, Xiaoji Niu, and Tisheng Zhang from the Integrated and Intelligent Navigation (i2Nav) Group, Wuhan University.

Related Paper:

  • Hailiang Tang, Tisheng Zhang, Xiaoji Niu, Jing Fan, and Jingnan Liu, “Impact of the Earth Rotation Compensation on MEMS-IMU Preintegration of Factor Graph Optimization,” IEEE Sensors Journal, 2022.

If you use this dataset for your academic research, please cite our related papers; and give acknowledgement like:

English version: “The authors would like to acknowledge Dr. Xiaoji Niu and the Integrated and Intelligent Navigation (i2Nav) group from Wuhan University for providing the GNSS/INS dataset that was used in the paper.”
中文模板:“本文作者感谢武汉大学多源智能导航实验室和牛小骥教授提供了本文所需的GNSS/INS数据集。”

Explanation: GitHub do not support Latex formula, and we suggest you read the document with a local Markdown editor, e.g. Typora.

1 The MEMS IMU

Four MEMS IMUs are included in this dataset, and the details about these IMUs are listed as follows:

IMU Description Vendor Gyroscope Bias Instability (Allan Variance) [$\deg/hr$]
ICM20602 consumer-grade chip InvenSense 10.0
ADIS16460 industrial-grade module Analog Devices Inc. 8.0
ADIS16465 industrial-grade module Analog Devices Inc. 2.0
HGuide-i300 industrial-grade module Honeywell 3.0

We also provide a set of noise parameters for each IMU, which are obtained by conducting parameter tuning. Specifically, the IMU measurements are defined as follows: $$ \boldsymbol{\tilde{f}}^{\mathrm{b}}=\boldsymbol{f}^{\mathrm{b}}+\boldsymbol{b}a+\boldsymbol{n}a, \ \boldsymbol{\tilde{w}}{\mathrm{ib}}^{\mathrm{b}}=\boldsymbol{w}{\mathrm{ib}}^{\mathrm{b}}+\boldsymbol{b}_g+\boldsymbol{n}_g $$ where the additive noise $\boldsymbol{n}_a$ and $\boldsymbol{n}_g$ are modeled as Gaussian white noise processes; $\boldsymbol{b}_a$ and $\boldsymbol{b}g$ are respectively the accelerometer and gyroscope biases, which are modeled as first-order Gaussian Markov processes. The IMU noise model can be expressed as follows: $$ \boldsymbol{n}g\sim \mathcal{N} \left( \mathbf{0},\sigma {g}^{2}\boldsymbol{I} \right) , \ \boldsymbol{n}a\sim \mathcal{N} \left( \mathbf{0},\sigma {a}^{2}\boldsymbol{I} \right) , \ \delta \boldsymbol{\dot{b}}{g_t}=-\frac{1}{\tau {b_g}}\delta \boldsymbol{b}{g_t}+\boldsymbol{n}{b_g}, \boldsymbol{n}{b_g}\sim \mathcal{N} \left( \mathbf{0},\sigma {b_g}^{2}\boldsymbol{I} \right) , \ \delta \boldsymbol{\dot{b}}{a_t}=-\frac{1}{\tau {b_a}}\delta \boldsymbol{b}{a_t}+\boldsymbol{n}{b_a}, \boldsymbol{n}{b_a}\sim \mathcal{N} \left( \mathbf{0},\sigma _{b_a}^{2}\boldsymbol{I} \right) $$

The reference noise parameters are listed as follows:

IMU Angle Random Walk
$\sigma_g$ [$deg/\sqrt{hr}$]
Velocity Random Walk
$\sigma_a$ [$m/s/\sqrt{hr}$]
Gyroscope-bias Standard Deviation
$\sigma_{b_g}$ [$deg/hr$]
Accelerometer-bias Standard Deviation
$\sigma_{b_a}$ [$mGal$]
Correlation Time
$\sigma_g, \sigma_a$ [$hr$]
ICM20602 0.2 0.2 200 1000 1
ADIS16460 0.2 0.1 20 100 1
ADIS16465 0.1 0.1 25 200 1
HGuide-i300 0.2 0.2 15 150 1

2 Installation parameters

The IMU body frame (b-frame) is defined as forward-right-down (FRD) coordinate. The GNSS geodetic positioning is defined in WGS-84 ellipsoid model. The GNSS antenna lever-arms in b-frame are listed as follows:

IMU Lever-arms (FRD) [$m$]
ICM20602 -0.073, 0.302, 0.087
ADIS16460 0.045, 0.46, -0.238
ADIS16465 -0.073, 0.302, 0.087
HGuide-i300 -0.075, 0.46, -0.218

3 File format descriptions

Three type of files are contained in the dataset, including the IMU file, the GNSS positioning file, and the ground-truth file.

The IMU text file format (*.txt) is defined as:

Field Description Units
1 GNSS seconds of week $s$
2 incremental angle x axis $rad$
3 incremental angle y axis $rad$
4 incremental angle z axis $rad$
5 incremental velocity x axis $m/s$
6 incremental velocity y axis $m/s$
7 incremental velocity z axis $m/s$

The GNSS positioning result text file (*.pos, 7 columns) is defined as:

Field Description Units
1 GNSS seconds of week $s$
2 geodetic latitude $deg$
3 geodetic longitude $deg$
4 geodetic height $m$
5 latitude standard deviation $m$
6 longitude standard deviation $m$
7 height standard deviation $m$

The ground-truth text file (*.nav) is defined as:

Field Description Units
1 GNSS week -
2 GNSS seconds of week $s$
3 geodetic latitude $deg$
4 geodetic longitude $deg$
5 geodetic height $m$
6 velocity in north direction $m/s$
7 velocity in east direction $m/s$
8 velocity in down direction $m/s$
9 roll attitude $deg$
10 pitch attitude $deg$
11 yaw attitude $deg$

About

An awesome vehicle dataset for GNSS/INS integration applications

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published