Skip to content

Unofficial implementation of Surrogate Gradient Field for Latent Manipulation in Pytorch (CVPR 2021)

License

MIT and 2 other licenses found

Licenses found

MIT
LICENSE
BSD-3-Clause
LICENSE_FACE_ALIGN
MIT
LICENSE_VGGFace2
Notifications You must be signed in to change notification settings

hyungkwonko/sgf-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Surrogate Gradient Field (SGF) for Latent Space Manipulation in Pytorch

This is an unofficial implementation of the paper "Surrogate Gradient Field for Latent Space Manipulation (CVPR 2021)" in Pytorch. Please notice that this implementation may differ in details compared to the original paper due to the empricial reasons.

sgf_result

The author leveraged diverse labels (e.g., age, gender, smile, ...) using MS Face API. In the experiment, I only used pose values in a soft manner (0.0 ~ 1.0) for my own research. Empirically, the result shows a smooth transition compared to the manipulation learned by hard labels. I believe adding more labels as the authors did in their work will make the transition more robust (e.g., id or characteristics of the input image is sustained while manipulating it).

Requirements

Please install the environment by running:

bash install.sh
  • which will install libraries such as:
pip install tensorflow-gpu==1.15
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 -c pytorch
pip install scipy>=0.17.0
pip install requests==2.22.0
pip install Pillow==6.2.1
pip install h5py==2.9.0
pip install imageio==2.9.0
pip install imageio-ffmpeg==0.4.2
pip install tqdm==4.49.0
pip install click pyspng ninja
pip install opencv-python
pip install scikit-image
pip install numba

Run SGF

To see the manipulation result:

python sgf_pose.py --G_path 'path/to/generator.pkl' --SE_path 'path/to/se.pth' --AUX_path 'path/to/aux.pth' --save_result 1

SGF step by step

SGF consists of multiple steps to follow. I will briefly introduce the concept of each step and the code to run respectively.

Step 1: Sample image generation using StyleGAN2 [x]

  • Generate 100K samples images using StyleGAN2 to train SENet
python generate.py --outdir=data/train/images --seeds=0,100000 --resize 256
python generate.py --outdir=data/val/images --seeds=100000,100500 --resize 256
python generate.py --outdir=data/test/images --seeds=100500,101000 --resize 256

Step 2: Label images [c]

  • Label images using Azure Face API / open source Face landmark detection algorithm to infer pose (yaw, roll, pitch)
python face_align.py --indir train
python face_align.py --indir val
python face_align.py --indir test
  • If you want to see the landmark result
python face_align.py --indir test --plot 1
  • Next, infer the face pose values (e.g., yaw, roll, pitch)
python pose_estimation.py --image_dir data/train/
python pose_estimation.py --image_dir data/val/
python pose_estimation.py --image_dir data/test/
  • If you want to see the pose result
python pose_estimation.py --image_dir data/test/ --save_img 1

Step 3: Fine-tune Squeeze and Excitation Network using images [x] and labels [c]

  • Used is SE ResNet 50 pretrained on VGG Face2 dataset
python finetune_pose.py
python finetune_pose.py --mode test --model_path path/to/model.pth

Step 4: Train Auxiliary (FC-layer) Network [mapping: (z, c) -> z]

  • 6 FC layers for Z space, and 15 layers for W space
  • AdaIN is used to mix features (z and c) in the same way as StyleGAN v1
  • Refer to Appendix B in the paper
python fc_layer_pose.py --ckpt_dir 'path/to/save_dir'
python fc_layer_pose.py --mode test --ckpt_dir 'path/to/save_dir' --ckpt_fname 'filename.pth'

Step 5: Calculate gradient in the surrogate gradient field and update [z]

  • Refer to Algo 1 in the original paper
  • Manipulate C to suit your purpose
python sgf_pose.py --G_path 'path/to/generator.pkl' --SE_path 'path/to/se.pth' --AUX_path 'path/to/aux.pth' --save_result 1

Acknowledgement

Many thanks to the first author of the original paper, Minjun Li. The reproducing was not possible without Minjun's help.

References

Credits

StyleGAN2-ADA:
https://github.com/NVlabs/stylegan2-ada-pytorch
Copyright (c) 2021, NVIDIA Corporation
NVIDIA Source Code License https://github.com/NVlabs/stylegan2-ada-pytorch/blob/main/LICENSE.txt

Face Alignment:
https://github.com/1adrianb/face-alignment
Copyright (c) 2017, Adrian Bulat
License (BSD 3-Clause) https://github.com/1adrianb/face-alignment/blob/master/LICENSE

VGG Face2 Datset & Squeeze and Excitation Network:
https://github.com/cydonia999/VGGFace2-pytorch
Copyright (c) 2018 cydonia
License (MIT) https://github.com/cydonia999/VGGFace2-pytorch/blob/master/LICENSE

About

Unofficial implementation of Surrogate Gradient Field for Latent Manipulation in Pytorch (CVPR 2021)

Topics

Resources

License

MIT and 2 other licenses found

Licenses found

MIT
LICENSE
BSD-3-Clause
LICENSE_FACE_ALIGN
MIT
LICENSE_VGGFace2

Stars

Watchers

Forks