Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add a periods argument to local.fit #219

Merged
merged 6 commits into from
Oct 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions CHANGELOG.rst
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,10 @@ v0.5.0 (unreleased)
-------------------
Contributors to this version: Gabriel Rondeau-Genesse (:user:`RondeauG`), Trevor James Smith (:user:`Zeitsperre`).

New features and enhancements
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
* A `periods` parameter was added to ``frequency_analysis.local.fit`` to compute multiple separate periods with a single call. (:pull:`219`).

Breaking changes
^^^^^^^^^^^^^^^^
* The `xhydro` testing utilities have been rewritten to use `pooch` for downloading and caching testing datasets from `hydrologie/xhydro-testdata`. (:pull:`212`).
Expand Down
80 changes: 52 additions & 28 deletions src/xhydro/frequency_analysis/local.py
Original file line number Diff line number Diff line change
@@ -1,14 +1,14 @@
"""Local frequency analysis functions and utilities."""

import datetime
from typing import Optional, Union

import numpy as np
import statsmodels
import xarray as xr
import xclim.indices.stats
from scipy.stats.mstats import plotting_positions
from statsmodels.tools import eval_measures
from xscen.utils import standardize_periods

__all__ = [
"criteria",
Expand All @@ -19,9 +19,11 @@

def fit(
ds,
*,
distributions: list[str] | None = None,
min_years: int | None = None,
method: str = "ML",
periods: list[str] | list[list[str]] | None = None,
) -> xr.Dataset:
"""Fit multiple distributions to data.

Expand All @@ -36,6 +38,10 @@ def fit(
Minimum number of years required for a distribution to be fitted.
method : str
Fitting method. Defaults to "ML" (maximum likelihood).
periods : list of str or list of list of str, optional
Either [start, end] or list of [start, end] of periods to be considered.
If multiple periods are given, the output will have a `horizon` dimension.
If None, all data is used.

Returns
-------
Expand All @@ -48,38 +54,56 @@ def fit(
maximum number of unique parameters between the distributions.
"""
distributions = distributions or ["genextreme", "pearson3", "gumbel_r", "expon"]

periods = (
standardize_periods(periods, multiple=True)
if periods is not None
else [[str(int(ds.time.dt.year.min())), str(int(ds.time.dt.year.max()))]]
)

out = []
for v in ds.data_vars:
p = []
for d in distributions:
p.append( # noqa: PERF401
xclim.indices.stats.fit(
ds[v].chunk({"time": -1}), dist=d, method=method
for period in periods:
outp = []
ds_subset = ds.sel(time=slice(period[0], period[1]))
for v in ds.data_vars:
p = []
for d in distributions:
p.append( # noqa: PERF401
xclim.indices.stats.fit(
ds_subset[v].chunk({"time": -1}), dist=d, method=method
)
.assign_coords(scipy_dist=d)
.expand_dims("scipy_dist")
)
.assign_coords(scipy_dist=d)
.expand_dims("scipy_dist")
)
params = xr.concat(p, dim="scipy_dist")

# Reorder dparams to match the order of the parameters across all distributions, since subsequent operations rely on this.
p_order = sorted(set(params.dparams.values).difference(["loc", "scale"])) + [
"loc",
"scale",
]
params = params.sel(dparams=p_order)

if min_years is not None:
params = params.where(ds[v].notnull().sum("time") >= min_years)
params.attrs["scipy_dist"] = distributions
params.attrs["description"] = "Parameters of the distributions"
params.attrs["long_name"] = "Distribution parameters"
params.attrs["min_years"] = min_years
out.append(params)

out = xr.merge(out)
params = xr.concat(p, dim="scipy_dist")

# Reorder dparams to match the order of the parameters across all distributions, since subsequent operations rely on this.
p_order = sorted(
set(params.dparams.values).difference(["loc", "scale"])
) + [
"loc",
"scale",
]
params = params.sel(dparams=p_order)

if min_years is not None:
params = params.where(ds_subset[v].notnull().sum("time") >= min_years)
params = params.expand_dims({"horizon": ["-".join(period)]})
params.attrs["scipy_dist"] = distributions
params.attrs["description"] = "Parameters of the distributions"
params.attrs["long_name"] = "Distribution parameters"
params.attrs["min_years"] = min_years
outp.append(params)
out.append(xr.merge(outp))

out = xr.concat(out, dim="horizon")
out = out.chunk({"dparams": -1})
out.attrs = ds.attrs

if len(out.horizon) == 1:
# If only one period was asked, remove the horizon dimension, but keep the period in the coordinates.
out = out.squeeze("horizon")

return out


Expand Down
50 changes: 50 additions & 0 deletions tests/test_local.py
Original file line number Diff line number Diff line change
Expand Up @@ -73,6 +73,56 @@ def test_min_years(self, miny):
[[np.nan, np.nan]],
)

@pytest.mark.parametrize(
"periods",
[
None,
["1961", "1980"],
["1962", "2010"],
["2001", "2020"],
[["2001", "2020"], ["2041", "2060"]],
],
)
def test_periods(self, periods):
ds = timeseries(
np.arange(1, 100) * 5 + 350,
variable="streamflow",
start="2001-01-01",
freq="YS",
as_dataset=True,
)

min_years = 30 if periods == ["2001", "2020"] else None
params = xhfa.local.fit(
ds, distributions=["gumbel_r"], periods=periods, min_years=min_years
)

if periods is None:
np.testing.assert_array_almost_equal(
params.streamflow.squeeze(), [528.9, 129.23], decimal=2
)

elif isinstance(periods[0], str):
np.testing.assert_array_equal(
params.horizon, [f"{periods[0]}-{periods[1]}"]
)
results = {
"1961": np.array([np.nan, np.nan]),
"1962": np.array([370.35, 12.96]),
"2001": np.array([np.nan, np.nan]),
}
np.testing.assert_array_almost_equal(
params.streamflow.squeeze(), results[periods[0]], decimal=2
)

elif periods[0] == ["2001", "2020"]:
np.testing.assert_array_equal(params.horizon, ["2001-2020", "2041-2060"])
np.testing.assert_array_almost_equal(
params.streamflow.squeeze(),
np.array([[388.15, 26.06], [588.15, 26.06]]),
decimal=2,
)


@pytest.mark.parametrize("mode", ["max", "min", "foo"])
def test_quantiles(mode):
Expand Down