-
-
Notifications
You must be signed in to change notification settings - Fork 4.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #2143 from huggingface/fix_asymm_set_grad_enable
Fix #2132, remove use of _C.set_grad_enable. Line endings were messed up too
- Loading branch information
Showing
1 changed file
with
97 additions
and
97 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,97 +1,97 @@ | ||
import torch | ||
import torch.nn as nn | ||
|
||
|
||
class AsymmetricLossMultiLabel(nn.Module): | ||
def __init__(self, gamma_neg=4, gamma_pos=1, clip=0.05, eps=1e-8, disable_torch_grad_focal_loss=False): | ||
super(AsymmetricLossMultiLabel, self).__init__() | ||
|
||
self.gamma_neg = gamma_neg | ||
self.gamma_pos = gamma_pos | ||
self.clip = clip | ||
self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss | ||
self.eps = eps | ||
|
||
def forward(self, x, y): | ||
"""" | ||
Parameters | ||
---------- | ||
x: input logits | ||
y: targets (multi-label binarized vector) | ||
""" | ||
|
||
# Calculating Probabilities | ||
x_sigmoid = torch.sigmoid(x) | ||
xs_pos = x_sigmoid | ||
xs_neg = 1 - x_sigmoid | ||
|
||
# Asymmetric Clipping | ||
if self.clip is not None and self.clip > 0: | ||
xs_neg = (xs_neg + self.clip).clamp(max=1) | ||
|
||
# Basic CE calculation | ||
los_pos = y * torch.log(xs_pos.clamp(min=self.eps)) | ||
los_neg = (1 - y) * torch.log(xs_neg.clamp(min=self.eps)) | ||
loss = los_pos + los_neg | ||
|
||
# Asymmetric Focusing | ||
if self.gamma_neg > 0 or self.gamma_pos > 0: | ||
if self.disable_torch_grad_focal_loss: | ||
torch._C.set_grad_enabled(False) | ||
pt0 = xs_pos * y | ||
pt1 = xs_neg * (1 - y) # pt = p if t > 0 else 1-p | ||
pt = pt0 + pt1 | ||
one_sided_gamma = self.gamma_pos * y + self.gamma_neg * (1 - y) | ||
one_sided_w = torch.pow(1 - pt, one_sided_gamma) | ||
if self.disable_torch_grad_focal_loss: | ||
torch._C.set_grad_enabled(True) | ||
loss *= one_sided_w | ||
|
||
return -loss.sum() | ||
|
||
|
||
class AsymmetricLossSingleLabel(nn.Module): | ||
def __init__(self, gamma_pos=1, gamma_neg=4, eps: float = 0.1, reduction='mean'): | ||
super(AsymmetricLossSingleLabel, self).__init__() | ||
|
||
self.eps = eps | ||
self.logsoftmax = nn.LogSoftmax(dim=-1) | ||
self.targets_classes = [] # prevent gpu repeated memory allocation | ||
self.gamma_pos = gamma_pos | ||
self.gamma_neg = gamma_neg | ||
self.reduction = reduction | ||
|
||
def forward(self, inputs, target, reduction=None): | ||
"""" | ||
Parameters | ||
---------- | ||
x: input logits | ||
y: targets (1-hot vector) | ||
""" | ||
|
||
num_classes = inputs.size()[-1] | ||
log_preds = self.logsoftmax(inputs) | ||
self.targets_classes = torch.zeros_like(inputs).scatter_(1, target.long().unsqueeze(1), 1) | ||
|
||
# ASL weights | ||
targets = self.targets_classes | ||
anti_targets = 1 - targets | ||
xs_pos = torch.exp(log_preds) | ||
xs_neg = 1 - xs_pos | ||
xs_pos = xs_pos * targets | ||
xs_neg = xs_neg * anti_targets | ||
asymmetric_w = torch.pow(1 - xs_pos - xs_neg, | ||
self.gamma_pos * targets + self.gamma_neg * anti_targets) | ||
log_preds = log_preds * asymmetric_w | ||
|
||
if self.eps > 0: # label smoothing | ||
self.targets_classes = self.targets_classes.mul(1 - self.eps).add(self.eps / num_classes) | ||
|
||
# loss calculation | ||
loss = - self.targets_classes.mul(log_preds) | ||
|
||
loss = loss.sum(dim=-1) | ||
if self.reduction == 'mean': | ||
loss = loss.mean() | ||
|
||
return loss | ||
import torch | ||
import torch.nn as nn | ||
|
||
|
||
class AsymmetricLossMultiLabel(nn.Module): | ||
def __init__(self, gamma_neg=4, gamma_pos=1, clip=0.05, eps=1e-8, disable_torch_grad_focal_loss=False): | ||
super(AsymmetricLossMultiLabel, self).__init__() | ||
|
||
self.gamma_neg = gamma_neg | ||
self.gamma_pos = gamma_pos | ||
self.clip = clip | ||
self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss | ||
self.eps = eps | ||
|
||
def forward(self, x, y): | ||
"""" | ||
Parameters | ||
---------- | ||
x: input logits | ||
y: targets (multi-label binarized vector) | ||
""" | ||
|
||
# Calculating Probabilities | ||
x_sigmoid = torch.sigmoid(x) | ||
xs_pos = x_sigmoid | ||
xs_neg = 1 - x_sigmoid | ||
|
||
# Asymmetric Clipping | ||
if self.clip is not None and self.clip > 0: | ||
xs_neg = (xs_neg + self.clip).clamp(max=1) | ||
|
||
# Basic CE calculation | ||
los_pos = y * torch.log(xs_pos.clamp(min=self.eps)) | ||
los_neg = (1 - y) * torch.log(xs_neg.clamp(min=self.eps)) | ||
loss = los_pos + los_neg | ||
|
||
# Asymmetric Focusing | ||
if self.gamma_neg > 0 or self.gamma_pos > 0: | ||
if self.disable_torch_grad_focal_loss: | ||
torch.set_grad_enabled(False) | ||
pt0 = xs_pos * y | ||
pt1 = xs_neg * (1 - y) # pt = p if t > 0 else 1-p | ||
pt = pt0 + pt1 | ||
one_sided_gamma = self.gamma_pos * y + self.gamma_neg * (1 - y) | ||
one_sided_w = torch.pow(1 - pt, one_sided_gamma) | ||
if self.disable_torch_grad_focal_loss: | ||
torch.set_grad_enabled(True) | ||
loss *= one_sided_w | ||
|
||
return -loss.sum() | ||
|
||
|
||
class AsymmetricLossSingleLabel(nn.Module): | ||
def __init__(self, gamma_pos=1, gamma_neg=4, eps: float = 0.1, reduction='mean'): | ||
super(AsymmetricLossSingleLabel, self).__init__() | ||
|
||
self.eps = eps | ||
self.logsoftmax = nn.LogSoftmax(dim=-1) | ||
self.targets_classes = [] # prevent gpu repeated memory allocation | ||
self.gamma_pos = gamma_pos | ||
self.gamma_neg = gamma_neg | ||
self.reduction = reduction | ||
|
||
def forward(self, inputs, target, reduction=None): | ||
"""" | ||
Parameters | ||
---------- | ||
x: input logits | ||
y: targets (1-hot vector) | ||
""" | ||
|
||
num_classes = inputs.size()[-1] | ||
log_preds = self.logsoftmax(inputs) | ||
self.targets_classes = torch.zeros_like(inputs).scatter_(1, target.long().unsqueeze(1), 1) | ||
|
||
# ASL weights | ||
targets = self.targets_classes | ||
anti_targets = 1 - targets | ||
xs_pos = torch.exp(log_preds) | ||
xs_neg = 1 - xs_pos | ||
xs_pos = xs_pos * targets | ||
xs_neg = xs_neg * anti_targets | ||
asymmetric_w = torch.pow(1 - xs_pos - xs_neg, | ||
self.gamma_pos * targets + self.gamma_neg * anti_targets) | ||
log_preds = log_preds * asymmetric_w | ||
|
||
if self.eps > 0: # label smoothing | ||
self.targets_classes = self.targets_classes.mul(1 - self.eps).add(self.eps / num_classes) | ||
|
||
# loss calculation | ||
loss = - self.targets_classes.mul(log_preds) | ||
|
||
loss = loss.sum(dim=-1) | ||
if self.reduction == 'mean': | ||
loss = loss.mean() | ||
|
||
return loss |