-
Notifications
You must be signed in to change notification settings - Fork 121
/
projector.py
379 lines (288 loc) · 10.3 KB
/
projector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import argparse
import math
import os
import torch
from torch import optim
from torch.nn import functional as F
from torchvision import transforms
from PIL import Image
from utils import tensor2image, save_image
from tqdm import tqdm
import lpips
from model import Generator, Encoder
def noise_regularize(noises):
loss = 0
for noise in noises:
size = noise.shape[2]
while True:
loss = (
loss
+ (noise * torch.roll(noise, shifts=1, dims=3)).mean().pow(2)
+ (noise * torch.roll(noise, shifts=1, dims=2)).mean().pow(2)
)
if size <= 8:
break
noise = noise.reshape([-1, 1, size // 2, 2, size // 2, 2])
noise = noise.mean([3, 5])
size //= 2
return loss
def noise_normalize_(noises):
for noise in noises:
mean = noise.mean()
std = noise.std()
noise.data.add_(-mean).div_(std)
def get_lr(t, initial_lr, rampdown=0.25, rampup=0.05):
lr_ramp = min(1, (1 - t) / rampdown)
lr_ramp = 0.5 - 0.5 * math.cos(lr_ramp * math.pi)
lr_ramp = lr_ramp * min(1, t / rampup)
return initial_lr * lr_ramp
def latent_noise(latent, strength):
noise = torch.randn_like(latent) * strength
return latent + noise
def make_image(tensor):
return (
tensor.detach()
.clamp_(min=-1, max=1)
.add(1)
.div_(2)
.mul(255)
.type(torch.uint8)
.permute(0, 2, 3, 1)
.to("cpu")
.numpy()
)
if __name__ == "__main__":
device = "cuda"
# -----------------------------------
# Parser
# -----------------------------------
parser = argparse.ArgumentParser(
description="Image projector to the generator latent spaces"
)
parser.add_argument(
"--ckpt", type=str, required=True, help="path to the model checkpoint"
)
parser.add_argument(
"--e_ckpt", type=str, default=None, help="path to the encoder checkpoint"
)
parser.add_argument(
"--size", type=int, default=256, help="output image sizes of the generator"
)
parser.add_argument(
"--truncation", type=float, default=0.7, help="truncation"
)
parser.add_argument(
"--lr_rampup",
type=float,
default=0.05,
help="duration of the learning rate warmup",
)
parser.add_argument(
"--lr_rampdown",
type=float,
default=0.25,
help="duration of the learning rate decay",
)
parser.add_argument("--lr", type=float, default=0.01, help="learning rate")
parser.add_argument(
"--noise", type=float, default=0.05, help="strength of the noise level"
)
parser.add_argument(
"--noise_ramp",
type=float,
default=0.75,
help="duration of the noise level decay",
)
parser.add_argument("--step", type=int, default=1000, help="optimize iterations")
parser.add_argument(
"--noise_regularize",
type=float,
default=1e5,
help="weight of the noise regularization",
)
parser.add_argument("--mse", type=float, default=0, help="weight of the mse loss")
parser.add_argument("--vgg", type=float, default=1.0, help="weight of the vgg loss")
parser.add_argument(
"--w_plus",
action="store_true",
help="allow to use distinct latent codes to each layers",
)
parser.add_argument(
"--project_name", type=str, default="project", help="name of the result project file"
)
parser.add_argument(
"--factor_name", type=str, default="factor", help="name of the result factor file"
)
parser.add_argument(
"--files", nargs="+", help="path to image files to be projected"
)
args = parser.parse_args()
# =============================================
# -----------------------------------
# Project Images to Latent spaces
# -----------------------------------
if args.files is None:
exit()
n_mean_latent = 10000
# Load Real Images
resize = min(args.size, 256)
transform = transforms.Compose(
[
transforms.Resize(resize),
transforms.CenterCrop(resize),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
)
imgs = []
for imgfile in args.files:
img = transform(Image.open(imgfile).convert("RGB"))
imgs.append(img)
imgs = torch.stack(imgs, 0).to(device)
# -------------
# Generator
# -------------
g_ema = Generator(args.size, 512, 8).to(device)
g_ema.load_state_dict(torch.load(args.ckpt)["g_ema"], strict=False)
g_ema.eval()
trunc = g_ema.mean_latent(4096).detach().clone()
# -------------
# Encoder
# -------------
if args.e_ckpt is not None :
e_ckpt = torch.load(args.e_ckpt, map_location=device)
encoder = Encoder(args.size, 512).to(device)
encoder.load_state_dict(e_ckpt['e'])
encoder.eval()
# -------------
# Latent vector
# -------------
if args.e_ckpt is not None :
with torch.no_grad():
latent_init = encoder(imgs)
latent_in = latent_init.detach().clone()
else :
with torch.no_grad():
noise_sample = torch.randn(n_mean_latent, 512, device=device)
latent_out = g_ema.style(noise_sample)
latent_mean = latent_out.mean(0)
latent_std = ((latent_out - latent_mean).pow(2).sum() / n_mean_latent) ** 0.5
latent_in = latent_mean.detach().clone().unsqueeze(0).repeat(imgs.shape[0], 1)
if args.w_plus:
latent_in = latent_in.unsqueeze(1).repeat(1, g_ema.n_latent, 1)
latent_in.requires_grad = True
# -------------
# Noise
# -------------
noises_single = g_ema.make_noise()
noises = []
for noise in noises_single:
noises.append(noise.repeat(imgs.shape[0], 1, 1, 1).normal_())
for noise in noises:
noise.requires_grad = True
# -------------
# Loss
# -------------
# PerceptualLoss
percept = lpips.PerceptualLoss(
model="net-lin", net="vgg", use_gpu=device.startswith("cuda")
)
# Optimizer
if args.e_ckpt is not None :
optimizer = optim.Adam([latent_in], lr=args.lr)
else:
optimizer = optim.Adam([latent_in] + noises, lr=args.lr)
pbar = tqdm(range(args.step))
latent_path = []
proj_images = []
# Training !
for i in pbar:
t = i / args.step
lr = get_lr(t, args.lr)
optimizer.param_groups[0]["lr"] = lr
# fake image
if args.e_ckpt is not None :
img_gen, _ = g_ema([latent_in], input_is_latent=True,
truncation=args.truncation, truncation_latent = trunc,
randomize_noise=False)
else:
noise_strength = latent_std * args.noise * max(0, 1 - t / args.noise_ramp) ** 2
latent_n = latent_noise(latent_in, noise_strength.item())
img_gen, _ = g_ema([latent_n], input_is_latent=True, noise=noises)
#
batch, channel, height, width = img_gen.shape
if height > 256:
factor = height // 256
img_gen = img_gen.reshape(
batch, channel, height // factor, factor, width // factor, factor
)
img_gen = img_gen.mean([3, 5])
# latent
if args.e_ckpt is not None :
latent_hat = encoder(img_gen)
# Loss
p_loss = percept(img_gen, imgs).sum()
r_loss = torch.mean((img_gen - imgs) ** 2)
mse_loss = F.mse_loss(img_gen, imgs)
n_loss = noise_regularize(noises)
if args.e_ckpt is not None :
style_loss = F.mse_loss(latent_hat, latent_init)
loss = args.vgg * p_loss + r_loss + style_loss + args.mse * mse_loss
else :
style_loss = 0.0
loss = args.vgg * p_loss + r_loss + args.mse * mse_loss + args.noise_regularize * n_loss
# update
optimizer.zero_grad()
loss.backward(retain_graph=True)
optimizer.step()
noise_normalize_(noises)
if (i + 1) % 100 == 0:
latent_path.append(latent_in.detach().clone())
proj_images.append(img_gen)
pbar.set_description(
(
f"perceptual: {p_loss.item():.4f}; noise regularize: {n_loss.item():.4f}; "
f"reconstruction: {r_loss:.4f}; "
f"mse_img: {mse_loss.item():.4f}; mse_latent: {style_loss:.4f}; lr: {lr:.4f} |"
)
)
# =============================================
# -----------------------------------
# Save image, latent, noise
# -----------------------------------
# final generated image
if args.e_ckpt is not None :
img_gen, _ = g_ema([latent_path[-1]], input_is_latent=True,
truncation=args.truncation, truncation_latent = trunc,
randomize_noise=None)
else:
img_gen, _ = g_ema([latent_path[-1]], input_is_latent=True, noise=noises)
filename = f"{args.project_name}.pt"
img_ar = make_image(img_gen)
images = []
for i in range(len(proj_images)):
img = proj_images[i][0]
for k in range(1, len(proj_images[0])):
# img : torch.Size([3, 256*num_img, 256])
img = torch.cat([img, proj_images[i][k]], dim =1)
images.append(img)
result_file = {}
for i, input_name in enumerate(args.files):
noise_single = []
for noise in noises:
noise_single.append(noise)
name = os.path.splitext(os.path.basename(input_name))[0]
result_file[name] = {
"r_img": tensor2image(imgs[i]),
"f_img": tensor2image(img_gen[i]),
"p_img" : tensor2image(torch.cat(images, dim=2)),
"latent": latent_in[i].unsqueeze(0),
"noise": noise_single,
"args" : args,
}
img_name = os.path.splitext(os.path.basename(input_name))[0] + "-project.png"
pil_img = Image.fromarray(img_ar[i])
pil_img.save(img_name)
img_name = os.path.splitext(os.path.basename(input_name))[0] + "-project-interpolation.png"
save_image(tensor2image(torch.cat(images, dim=2)), size = 20, out=img_name)
torch.save(result_file, filename)