-
Notifications
You must be signed in to change notification settings - Fork 121
/
non_leaking.py
executable file
·465 lines (329 loc) · 13.7 KB
/
non_leaking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
import math
import torch
from torch import autograd
from torch.nn import functional as F
import numpy as np
from distributed import reduce_sum
from op import upfirdn2d
class AdaptiveAugment:
def __init__(self, ada_aug_target, ada_aug_len, update_every, device):
self.ada_aug_target = ada_aug_target
self.ada_aug_len = ada_aug_len
self.update_every = update_every
self.ada_update = 0
self.ada_aug_buf = torch.tensor([0.0, 0.0], device=device)
self.r_t_stat = 0
self.ada_aug_p = 0
@torch.no_grad()
def tune(self, real_pred):
self.ada_aug_buf += torch.tensor(
(torch.sign(real_pred).sum().item(), real_pred.shape[0]),
device=real_pred.device,
)
self.ada_update += 1
if self.ada_update % self.update_every == 0:
self.ada_aug_buf = reduce_sum(self.ada_aug_buf)
pred_signs, n_pred = self.ada_aug_buf.tolist()
self.r_t_stat = pred_signs / n_pred
if self.r_t_stat > self.ada_aug_target:
sign = 1
else:
sign = -1
self.ada_aug_p += sign * n_pred / self.ada_aug_len
self.ada_aug_p = min(1, max(0, self.ada_aug_p))
self.ada_aug_buf.mul_(0)
self.ada_update = 0
return self.ada_aug_p
SYM6 = (
0.015404109327027373,
0.0034907120842174702,
-0.11799011114819057,
-0.048311742585633,
0.4910559419267466,
0.787641141030194,
0.3379294217276218,
-0.07263752278646252,
-0.021060292512300564,
0.04472490177066578,
0.0017677118642428036,
-0.007800708325034148,
)
def translate_mat(t_x, t_y, device="cpu"):
batch = t_x.shape[0]
mat = torch.eye(3, device=device).unsqueeze(0).repeat(batch, 1, 1)
translate = torch.stack((t_x, t_y), 1)
mat[:, :2, 2] = translate
return mat
def rotate_mat(theta, device="cpu"):
batch = theta.shape[0]
mat = torch.eye(3, device=device).unsqueeze(0).repeat(batch, 1, 1)
sin_t = torch.sin(theta)
cos_t = torch.cos(theta)
rot = torch.stack((cos_t, -sin_t, sin_t, cos_t), 1).view(batch, 2, 2)
mat[:, :2, :2] = rot
return mat
def scale_mat(s_x, s_y, device="cpu"):
batch = s_x.shape[0]
mat = torch.eye(3, device=device).unsqueeze(0).repeat(batch, 1, 1)
mat[:, 0, 0] = s_x
mat[:, 1, 1] = s_y
return mat
def translate3d_mat(t_x, t_y, t_z):
batch = t_x.shape[0]
mat = torch.eye(4).unsqueeze(0).repeat(batch, 1, 1)
translate = torch.stack((t_x, t_y, t_z), 1)
mat[:, :3, 3] = translate
return mat
def rotate3d_mat(axis, theta):
batch = theta.shape[0]
u_x, u_y, u_z = axis
eye = torch.eye(3).unsqueeze(0)
cross = torch.tensor([(0, -u_z, u_y), (u_z, 0, -u_x), (-u_y, u_x, 0)]).unsqueeze(0)
outer = torch.tensor(axis)
outer = (outer.unsqueeze(1) * outer).unsqueeze(0)
sin_t = torch.sin(theta).view(-1, 1, 1)
cos_t = torch.cos(theta).view(-1, 1, 1)
rot = cos_t * eye + sin_t * cross + (1 - cos_t) * outer
eye_4 = torch.eye(4).unsqueeze(0).repeat(batch, 1, 1)
eye_4[:, :3, :3] = rot
return eye_4
def scale3d_mat(s_x, s_y, s_z):
batch = s_x.shape[0]
mat = torch.eye(4).unsqueeze(0).repeat(batch, 1, 1)
mat[:, 0, 0] = s_x
mat[:, 1, 1] = s_y
mat[:, 2, 2] = s_z
return mat
def luma_flip_mat(axis, i):
batch = i.shape[0]
eye = torch.eye(4).unsqueeze(0).repeat(batch, 1, 1)
axis = torch.tensor(axis + (0,))
flip = 2 * torch.ger(axis, axis) * i.view(-1, 1, 1)
return eye - flip
def saturation_mat(axis, i):
batch = i.shape[0]
eye = torch.eye(4).unsqueeze(0).repeat(batch, 1, 1)
axis = torch.tensor(axis + (0,))
axis = torch.ger(axis, axis)
saturate = axis + (eye - axis) * i.view(-1, 1, 1)
return saturate
def lognormal_sample(size, mean=0, std=1, device="cpu"):
return torch.empty(size, device=device).log_normal_(mean=mean, std=std)
def category_sample(size, categories, device="cpu"):
category = torch.tensor(categories, device=device)
sample = torch.randint(high=len(categories), size=(size,), device=device)
return category[sample]
def uniform_sample(size, low, high, device="cpu"):
return torch.empty(size, device=device).uniform_(low, high)
def normal_sample(size, mean=0, std=1, device="cpu"):
return torch.empty(size, device=device).normal_(mean, std)
def bernoulli_sample(size, p, device="cpu"):
return torch.empty(size, device=device).bernoulli_(p)
def random_mat_apply(p, transform, prev, eye, device="cpu"):
size = transform.shape[0]
select = bernoulli_sample(size, p, device=device).view(size, 1, 1)
select_transform = select * transform + (1 - select) * eye
return select_transform @ prev
def sample_affine(p, size, height, width, device="cpu"):
G = torch.eye(3, device=device).unsqueeze(0).repeat(size, 1, 1)
eye = G
# flip
param = category_sample(size, (0, 1))
Gc = scale_mat(1 - 2.0 * param, torch.ones(size), device=device)
G = random_mat_apply(p, Gc, G, eye, device=device)
# print('flip', G, scale_mat(1 - 2.0 * param, torch.ones(size)), sep='\n')
# 90 rotate
param = category_sample(size, (0, 3))
Gc = rotate_mat(-math.pi / 2 * param, device=device)
G = random_mat_apply(p, Gc, G, eye, device=device)
# print('90 rotate', G, rotate_mat(-math.pi / 2 * param), sep='\n')
# integer translate
param = uniform_sample(size, -0.125, 0.125)
param_height = torch.round(param * height) / height
param_width = torch.round(param * width) / width
Gc = translate_mat(param_width, param_height, device=device)
G = random_mat_apply(p, Gc, G, eye, device=device)
# print('integer translate', G, translate_mat(param_width, param_height), sep='\n')
# isotropic scale
param = lognormal_sample(size, std=0.2 * math.log(2))
Gc = scale_mat(param, param, device=device)
G = random_mat_apply(p, Gc, G, eye, device=device)
# print('isotropic scale', G, scale_mat(param, param), sep='\n')
p_rot = 1 - math.sqrt(1 - p)
# pre-rotate
param = uniform_sample(size, -math.pi, math.pi)
Gc = rotate_mat(-param, device=device)
G = random_mat_apply(p_rot, Gc, G, eye, device=device)
# print('pre-rotate', G, rotate_mat(-param), sep='\n')
# anisotropic scale
param = lognormal_sample(size, std=0.2 * math.log(2))
Gc = scale_mat(param, 1 / param, device=device)
G = random_mat_apply(p, Gc, G, eye, device=device)
# print('anisotropic scale', G, scale_mat(param, 1 / param), sep='\n')
# post-rotate
param = uniform_sample(size, -math.pi, math.pi)
Gc = rotate_mat(-param, device=device)
G = random_mat_apply(p_rot, Gc, G, eye, device=device)
# print('post-rotate', G, rotate_mat(-param), sep='\n')
# fractional translate
param = normal_sample(size, std=0.125)
Gc = translate_mat(param, param, device=device)
G = random_mat_apply(p, Gc, G, eye, device=device)
# print('fractional translate', G, translate_mat(param, param), sep='\n')
return G
def sample_color(p, size):
C = torch.eye(4).unsqueeze(0).repeat(size, 1, 1)
eye = C
axis_val = 1 / math.sqrt(3)
axis = (axis_val, axis_val, axis_val)
# brightness
param = normal_sample(size, std=0.2)
Cc = translate3d_mat(param, param, param)
C = random_mat_apply(p, Cc, C, eye)
# contrast
param = lognormal_sample(size, std=0.5 * math.log(2))
Cc = scale3d_mat(param, param, param)
C = random_mat_apply(p, Cc, C, eye)
# luma flip
param = category_sample(size, (0, 1))
Cc = luma_flip_mat(axis, param)
C = random_mat_apply(p, Cc, C, eye)
# hue rotation
param = uniform_sample(size, -math.pi, math.pi)
Cc = rotate3d_mat(axis, param)
C = random_mat_apply(p, Cc, C, eye)
# saturation
param = lognormal_sample(size, std=1 * math.log(2))
Cc = saturation_mat(axis, param)
C = random_mat_apply(p, Cc, C, eye)
return C
def make_grid(shape, x0, x1, y0, y1, device):
n, c, h, w = shape
grid = torch.empty(n, h, w, 3, device=device)
grid[:, :, :, 0] = torch.linspace(x0, x1, w, device=device)
grid[:, :, :, 1] = torch.linspace(y0, y1, h, device=device).unsqueeze(-1)
grid[:, :, :, 2] = 1
return grid
def affine_grid(grid, mat):
n, h, w, _ = grid.shape
return (grid.view(n, h * w, 3) @ mat.transpose(1, 2)).view(n, h, w, 2)
def get_padding(G, height, width, kernel_size):
device = G.device
cx = (width - 1) / 2
cy = (height - 1) / 2
cp = torch.tensor(
[(-cx, -cy, 1), (cx, -cy, 1), (cx, cy, 1), (-cx, cy, 1)], device=device
)
cp = G @ cp.T
pad_k = kernel_size // 4
pad = cp[:, :2, :].permute(1, 0, 2).flatten(1)
pad = torch.cat((-pad, pad)).max(1).values
pad = pad + torch.tensor([pad_k * 2 - cx, pad_k * 2 - cy] * 2, device=device)
pad = pad.max(torch.tensor([0, 0] * 2, device=device))
pad = pad.min(torch.tensor([width - 1, height - 1] * 2, device=device))
pad_x1, pad_y1, pad_x2, pad_y2 = pad.ceil().to(torch.int32)
return pad_x1, pad_x2, pad_y1, pad_y2
def try_sample_affine_and_pad(img, p, kernel_size, G=None):
batch, _, height, width = img.shape
G_try = G
if G is None:
G_try = torch.inverse(sample_affine(p, batch, height, width))
pad_x1, pad_x2, pad_y1, pad_y2 = get_padding(G_try, height, width, kernel_size)
img_pad = F.pad(img, (pad_x1, pad_x2, pad_y1, pad_y2), mode="reflect")
return img_pad, G_try, (pad_x1, pad_x2, pad_y1, pad_y2)
class GridSampleForward(autograd.Function):
@staticmethod
def forward(ctx, input, grid):
out = F.grid_sample(
input, grid, mode="bilinear", padding_mode="zeros", align_corners=False
)
ctx.save_for_backward(input, grid)
return out
@staticmethod
def backward(ctx, grad_output):
input, grid = ctx.saved_tensors
grad_input, grad_grid = GridSampleBackward.apply(grad_output, input, grid)
return grad_input, grad_grid
class GridSampleBackward(autograd.Function):
@staticmethod
def forward(ctx, grad_output, input, grid):
op = torch._C._jit_get_operation("aten::grid_sampler_2d_backward")
grad_input, grad_grid = op(grad_output, input, grid, 0, 0, False)
ctx.save_for_backward(grid)
return grad_input, grad_grid
@staticmethod
def backward(ctx, grad_grad_input, grad_grad_grid):
grid, = ctx.saved_tensors
grad_grad_output = None
if ctx.needs_input_grad[0]:
grad_grad_output = GridSampleForward.apply(grad_grad_input, grid)
return grad_grad_output, None, None
grid_sample = GridSampleForward.apply
def scale_mat_single(s_x, s_y):
return torch.tensor(((s_x, 0, 0), (0, s_y, 0), (0, 0, 1)), dtype=torch.float32)
def translate_mat_single(t_x, t_y):
return torch.tensor(((1, 0, t_x), (0, 1, t_y), (0, 0, 1)), dtype=torch.float32)
def random_apply_affine(img, p, G=None, antialiasing_kernel=SYM6):
kernel = antialiasing_kernel
len_k = len(kernel)
kernel = torch.as_tensor(kernel).to(img)
# kernel = torch.ger(kernel, kernel).to(img)
kernel_flip = torch.flip(kernel, (0,))
img_pad, G, (pad_x1, pad_x2, pad_y1, pad_y2) = try_sample_affine_and_pad(
img, p, len_k, G
)
G_inv = (
translate_mat_single((pad_x1 - pad_x2).item() / 2, (pad_y1 - pad_y2).item() / 2)
@ G
)
up_pad = (
(len_k + 2 - 1) // 2,
(len_k - 2) // 2,
(len_k + 2 - 1) // 2,
(len_k - 2) // 2,
)
img_2x = upfirdn2d(img_pad, kernel.unsqueeze(0), up=(2, 1), pad=(*up_pad[:2], 0, 0))
img_2x = upfirdn2d(img_2x, kernel.unsqueeze(1), up=(1, 2), pad=(0, 0, *up_pad[2:]))
G_inv = scale_mat_single(2, 2) @ G_inv @ scale_mat_single(1 / 2, 1 / 2)
G_inv = translate_mat_single(-0.5, -0.5) @ G_inv @ translate_mat_single(0.5, 0.5)
batch_size, channel, height, width = img.shape
pad_k = len_k // 4
shape = (batch_size, channel, (height + pad_k * 2) * 2, (width + pad_k * 2) * 2)
G_inv = (
scale_mat_single(2 / img_2x.shape[3], 2 / img_2x.shape[2])
@ G_inv
@ scale_mat_single(1 / (2 / shape[3]), 1 / (2 / shape[2]))
)
grid = F.affine_grid(G_inv[:, :2, :].to(img_2x), shape, align_corners=False)
img_affine = grid_sample(img_2x, grid)
d_p = -pad_k * 2
down_pad = (
d_p + (len_k - 2 + 1) // 2,
d_p + (len_k - 2) // 2,
d_p + (len_k - 2 + 1) // 2,
d_p + (len_k - 2) // 2,
)
img_down = upfirdn2d(
img_affine, kernel_flip.unsqueeze(0), down=(2, 1), pad=(*down_pad[:2], 0, 0)
)
img_down = upfirdn2d(
img_down, kernel_flip.unsqueeze(1), down=(1, 2), pad=(0, 0, *down_pad[2:])
)
return img_down, G
def apply_color(img, mat):
batch = img.shape[0]
img = img.permute(0, 2, 3, 1)
mat_mul = mat[:, :3, :3].transpose(1, 2).view(batch, 1, 3, 3)
mat_add = mat[:, :3, 3].view(batch, 1, 1, 3)
img = img @ mat_mul + mat_add
img = img.permute(0, 3, 1, 2)
return img
def random_apply_color(img, p, C=None):
if C is None:
C = sample_color(p, img.shape[0])
img = apply_color(img, C.to(img))
return img, C
def augment(img, p, transform_matrix=(None, None)):
img, G = random_apply_affine(img, p, transform_matrix[0])
img, C = random_apply_color(img, p, transform_matrix[1])
return img, (G, C)