This repository contains code for SVEN, a multi-modality sequence-oriented in silico model, for quantifying genetic variants' regulatory impacts in over 350 tissues and cell lines.
The SVEN framework is described in the following manuscript: Yu Wang, Nan Liang and Ge Gao, Quantify genetic variants' regulatory potential via a hybrid sequence-oriented model, bioRxiv (2024).
Note
Now we provide two modes for prediction: Full mode and Fast mode. For reproducing results from our manuscript, please use Full mode; otherwise, we recommend using Fast mode with negligible precision loss.
Clone the repository then download and extract necessary resource files:
git clone https://github.com/gao-lab/SVEN.git
cd SVEN
# Download and extract resources and model parameters, default for fast mode
sh download_resources.sh # ~2G
# For full mode
sh download_resources.sh -m full # ~380G
We recommend using mamba or conda environment. Please check install instructions of mamba from https://github.com/mamba-org/mamba, Tensorflow from https://www.tensorflow.org/ and bedtools from https://bedtools.readthedocs.io/ for more details.
# Create conda environment: sven
conda create -n sven python=3.10
# Activate conda environment
conda activate sven
# Install bedtools
conda install bioconda::bedtools
# Install tensorflow with cuda 12
pip3 install --user "tensorflow[and-cuda]"==2.16.1
# Or only install tensorflow
pip3 install tensorflow==2.16.1
# Install the other dependencies
pip3 install -r requirements.txt
# Process data and one-hot encoding
python prepare_data.py ./example/test_tss.txt
# OR get helps about prepare_data.py, the same below
python prepare_data.py -h
# Get functional annotations with CPUs in fast mode
python get_annotations.py
# OR get functional annotations with GPU 0 in full mode
python get_annotations.py --gpu 0 --mode full
# Transform annotations in fast mode
python transform_annotations.py
# OR transform annotations in full mode
python transform_annotations.py --mode full
# Predict gene expression
python predict_expression.py # with all models
python predict_expression.py --target_idx 3 # with target model
python predict_expression.py --target_idx 3 --mode full # with full mode
Please check ./resources/cell_line_list.txt
for the correspondence between target_idx and cell line.
Files and folders | Description |
---|---|
./example/test_tss.txt |
Input TSS file. Columns: chromosome, position (1-based), strand, gene_name (gene_name should be list in "./resources/tss_gene_list.txt" ). |
./work_dir |
Default work folder. You can change it by --work_dir. |
./work_dir/temp_bed |
Processed bed file of input. |
./work_dir/temp.h5 |
One-hot encoded sequences of input. |
./work_dir/annotations |
Folder for predicted annotations. |
./work_dir/annotations/transformed |
Folder for transformed annotations. |
./work_dir/output |
Folder for output. |
./work_dir/output/exp_tss.txt |
Predicted gene expression level in target cell line (log10 scale). |
# Example in fast mode. If use full mode, please execute with "--mode full".
# Process data and one-hot encoding
python prepare_data.py ./example/test_sv.vcf --type sv
# Get functional annotations for ref seq and alt seq
python get_annotations.py --gpu 0 --type sv
# Transform annotations
python transform_annotations.py --type sv
# Predict gene expression
python predict_expression.py --type sv # with all models
python predict_expression.py --target_idx 3 --type sv # with target model
Input file and output files | Description |
---|---|
./example/test_sv.vcf |
Input SV file. Columns: chromosome, position (1-based), ref allele, alt allele, sv info. |
./work_dir/output/exp_ref.txt |
Predicted gene expression level for ref allele in target cell line (log10 scale). |
./work_dir/output/exp_alt.txt |
Predicted gene expression level for alt allele in target cell line (log10 scale). |
./work_dir/output/exp_log2fc.txt |
Predicted effects of SVs on gene expression level in target cell line (log2 fold change). |
# Process data and one-hot encoding
python prepare_data.py ./example/test_snv.vcf --type snv
# Get functional annotations for ref seq and alt seq
python get_annotations.py --gpu 0 --type snv
# With full mode and cpu
python get_annotations.py --type snv --mode full
# Calculate effects of small noncoding variants
python predict_effect.py # with optimal cutoff from REVA benchmark dataset
python predict_effect.py --cutoff 0.5 # with custom cutoff
Input and output file | Description |
---|---|
./example/test_snv.vcf |
Input small variant file. Columns: chromosome, position (1-based), ref allele, alt allele, variant info. |
./work_dir/output/effect_snv.txt |
Predicted effects of small noncoding variants. Column: effect size, label (based on given cutoff, 1 for functional variant and 0 for non-functional variant.) |
As a framework with high flexibility, you can customize your own SVEN models.
Necessary files: Tss of genes ./resources/tss_gene_list.txt
, corresponding mRNA decay features (or other features; if you want to use sequence only, you may not provide it) ./resources/utr_features.txt
and corresponding gene expression profile (example is the expression profile from 53 GTEx tissues) ./resources/gene_exp.txt
.
# You can use our annotation module:
python prepare_data.py ./resources/tss_gene_list.txt
python get_annotations.py --gpu 0 # or with --mode full
# You can also use other tools to get annotations, such as Enformer:
# Check https://github.com/google-deepmind/deepmind-research/tree/master/enformer for more details about Enformer.
python prepare_data.py ./resources/tss_gene_list.txt --seq_len 393216
python custom_sven.py --action enformer_predict --enformer_path ENFORMER_MODEL_PATH
# For our annotation module:
python transform_annotations.py # or with --mode full
# For Enformer annotations with custom decay_list:
python custom_sven.py --action enformer_transform --decay_list "0.01, 0.10, 0.20"
Build-in models: XGBoost model and elasticNet. You can modify model's parameters in train_xgb() and train_elasticNet()
or add more models in ./sven/train.py
# Train xgb model with default setting on first cell line/tissue in gene expression profile
python custom_sven.py --action exp_train --exp_id 0 # or with --mode full
# Train elasticNet model, including rRNA genes
python custom_sven.py --action exp_train --exp_id 0 --model_type elasticNet --ignore_rRNA false
# Train with Enformer annotation only, with custom performance cutoff, device and random seed
python custom_sven.py --action exp_train --exp_id 0 --mode enformer --cutoff 0.6 --utr_features false --device gpu --seed 42
Yu Wang: wangy@mail.cbi.pku.edu.cn