-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* support basic TTS inference * Agent (#648) * agent * rm fastapi * routes * dry run: tts * api_invoke_cahta * .gradio ignore * small fix * Fix llama generate * add lots * add agent * fix agent * fix agent * fix route * fix compile * Add fixed timbre * Fix duplicated audio * Fix * remove unused * Improve ui * okok * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * Update Agent Webui and doc * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: Lengyue <lengyue@lengyue.me> Co-authored-by: spicysama <a2983352531@outlook.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
- Loading branch information
1 parent
8f481e6
commit 834b072
Showing
13 changed files
with
1,875 additions
and
86 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -29,3 +29,4 @@ asr-label* | |
/references | ||
/example | ||
/faster_whisper | ||
/.gradio |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,45 @@ | ||
# How To Start? | ||
|
||
### Environment Prepare | ||
|
||
If you haven't install the environment of Fish-speech, please use: | ||
|
||
```bash | ||
pip install -e .[stable] | ||
``` | ||
|
||
Then use: | ||
|
||
```bash | ||
pip install livekit livekit-agents | ||
``` | ||
|
||
### Launch The Agent Demo. | ||
|
||
Please use the command below under the main folder: | ||
|
||
```bash | ||
python -m tools.api --llama-checkpoint-path checkpoints/fish-agent-3b-pretrain/ --mode agent --compile | ||
``` | ||
|
||
The ``--compile`` args only support Python < 3.12 , which will greatly speed up the token generation. | ||
|
||
It won't compile at once (remember). | ||
|
||
Then please use the command: | ||
|
||
```bash | ||
python -m tools.e2e_webui | ||
``` | ||
|
||
This will create a Gradio WebUI on the device. | ||
|
||
When you first use the model, it will come to compile (if the ``--compile`` is True) for a short time, so please wait with patience. | ||
|
||
Have a good time! | ||
|
||
# About Agent | ||
|
||
This model is currently undergoing testing. We welcome suggestions and assistance in improving it. | ||
|
||
We are considering refining the tutorial and incorporating it into the main documentation after the testing phase is complete. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,2 +1,256 @@ | ||
from dataclasses import dataclass, field | ||
from typing import Literal | ||
|
||
import torch | ||
from transformers import AutoTokenizer, PretrainedConfig, PreTrainedTokenizerFast | ||
|
||
IM_START_TOKEN = "<|im_start|>" | ||
IM_END_TOKEN = "<|im_end|>" | ||
SEMANTIC_TOKEN = "<|semantic|>" | ||
MEL_TOKEN = "<|mel|>" | ||
PHONEME_START_TOKEN = "<|phoneme_start|>" | ||
PHONEME_END_TOKEN = "<|phoneme_end|>" | ||
ALL_SPECIAL_TOKENS = [ | ||
IM_START_TOKEN, | ||
IM_END_TOKEN, | ||
SEMANTIC_TOKEN, | ||
MEL_TOKEN, | ||
PHONEME_START_TOKEN, | ||
PHONEME_END_TOKEN, | ||
] | ||
|
||
CODEBOOK_PAD_TOKEN_ID = 0 | ||
|
||
|
||
class FishTokenizerConfig(PretrainedConfig): | ||
share_codebook_embeddings: bool = True | ||
codebook_size: int = 1024 | ||
num_codebooks: int = 8 | ||
|
||
|
||
class FishTokenizerFast(PreTrainedTokenizerFast): | ||
def __init__(self, *args, **kwargs): | ||
super().__init__(*args, **kwargs) | ||
self.share_codebook_embeddings = kwargs.pop("share_codebook_embeddings", True) | ||
self.codebook_size = kwargs.pop("codebook_size", 1024) | ||
self.num_codebooks = kwargs.pop("num_codebooks", 8) | ||
|
||
|
||
AutoTokenizer.register(FishTokenizerConfig, fast_tokenizer_class=FishTokenizerFast) | ||
|
||
|
||
@dataclass(kw_only=True) | ||
class BasePart: | ||
pass | ||
|
||
|
||
@dataclass(kw_only=True) | ||
class VQPart(BasePart): | ||
codes: torch.Tensor | ||
|
||
|
||
@dataclass(kw_only=True) | ||
class TextPart(BasePart): | ||
text: str | ||
|
||
|
||
@dataclass(kw_only=True) | ||
class MelPart(BasePart): | ||
mels: torch.Tensor | ||
|
||
|
||
@dataclass(kw_only=True) | ||
class EncodedMessage: | ||
tokens: torch.Tensor | ||
labels: torch.Tensor | ||
vq_parts: list[torch.Tensor] | ||
mel_parts: list[torch.Tensor] | ||
vq_require_losses: torch.Tensor | None = None | ||
|
||
|
||
@dataclass(kw_only=True) | ||
class Message: | ||
role: Literal["system", "user", "assistant"] | ||
parts: list[VQPart | TextPart | MelPart] = field(default_factory=list) | ||
add_im_start: bool = True | ||
add_im_end: bool = True | ||
cal_loss: bool = False | ||
|
||
# By default, ignore the loss of the auto-generated im_start token | ||
ignore_im_start_loss: bool = True | ||
|
||
def encode( | ||
self: "Message", | ||
tokenizer: AutoTokenizer, | ||
) -> EncodedMessage: | ||
all_tokens = [] | ||
all_labels = [] | ||
|
||
# Multi-modal tokens | ||
vq_parts = [] | ||
mel_parts = [] | ||
|
||
semantic_id, mel_id = tokenizer.convert_tokens_to_ids( | ||
[SEMANTIC_TOKEN, MEL_TOKEN] | ||
) | ||
|
||
parts = self.parts.copy() | ||
if self.add_im_start: | ||
parts.insert(0, TextPart(text=f"<|im_start|>{self.role}\n")) | ||
|
||
if self.add_im_end: | ||
parts.append(TextPart(text="<|im_end|>")) | ||
|
||
for part in parts: | ||
if isinstance(part, TextPart): | ||
tokens = tokenizer.encode( | ||
part.text, | ||
add_special_tokens=False, | ||
truncation=False, | ||
return_tensors="pt", | ||
).int()[0] | ||
elif isinstance(part, VQPart): | ||
tokens = torch.zeros(part.codes.shape[1], dtype=torch.int) + semantic_id | ||
codes = part.codes.clone() + 1 | ||
|
||
if getattr(tokenizer, "share_codebook_embeddings", True) is False: | ||
for i in range(len(codes)): | ||
codes[i] += tokenizer.codebook_size * i | ||
|
||
vq_parts.append(codes) | ||
elif isinstance(part, MelPart): | ||
tokens = torch.zeros(part.mels.shape[1], dtype=torch.int) + mel_id | ||
mel_parts.append(part.mels) | ||
else: | ||
raise ValueError(f"Unsupported part type: {type(part)}") | ||
|
||
all_tokens.append(tokens) | ||
if self.cal_loss: | ||
all_labels.append(tokens.clone()) | ||
else: | ||
all_labels.append(torch.full_like(tokens, -100)) | ||
|
||
tokens = torch.cat(all_tokens, dim=0) | ||
labels = torch.cat(all_labels, dim=0) | ||
assert tokens.shape == labels.shape | ||
|
||
if self.ignore_im_start_loss and self.add_im_start: | ||
labels[: len(all_tokens[0])] = -100 | ||
|
||
return EncodedMessage( | ||
tokens=tokens, | ||
labels=labels, | ||
vq_parts=vq_parts, | ||
mel_parts=mel_parts, | ||
) | ||
|
||
|
||
@dataclass | ||
class Conversation: | ||
messages: list[Message] | ||
|
||
def encode( | ||
self: "Conversation", | ||
tokenizer: AutoTokenizer, | ||
add_shift: bool = True, | ||
) -> EncodedMessage: | ||
# Build the input_ids and labels | ||
tokens = [] | ||
labels = [] | ||
vq_parts = [] | ||
mel_parts = [] | ||
vq_require_losses = [] | ||
|
||
for message in self.messages: | ||
encoded = message.encode( | ||
tokenizer, | ||
) | ||
tokens.append(encoded.tokens) | ||
labels.append(encoded.labels) | ||
vq_parts.extend(encoded.vq_parts) | ||
mel_parts.extend(encoded.mel_parts) | ||
vq_require_losses.extend([message.cal_loss] * len(encoded.vq_parts)) | ||
|
||
tokens = torch.cat(tokens, dim=0) | ||
labels = torch.cat(labels, dim=0) | ||
vq_require_losses = torch.tensor(vq_require_losses, dtype=torch.bool) | ||
|
||
if add_shift: | ||
tokens = tokens[:-1] | ||
labels = labels[1:] | ||
|
||
assert tokens.dtype in [ | ||
torch.int, | ||
torch.long, | ||
], f"Invalid dtype: {tokens.dtype}, conv: {conversation}" | ||
|
||
return EncodedMessage( | ||
tokens=tokens, | ||
labels=labels, | ||
vq_parts=vq_parts, | ||
mel_parts=mel_parts, | ||
vq_require_losses=vq_require_losses, | ||
) | ||
|
||
def encode_for_inference( | ||
self: "Conversation", | ||
tokenizer: AutoTokenizer, | ||
num_codebooks: int, | ||
) -> EncodedMessage: | ||
encoded = self.encode(tokenizer, add_shift=False) | ||
tokens = encoded.tokens | ||
values = torch.zeros((num_codebooks + 1, len(tokens)), dtype=torch.int) | ||
values[0] = tokens | ||
|
||
if encoded.vq_parts is None or len(encoded.vq_parts) == 0: | ||
return values | ||
|
||
semantic_id, mel_id = tokenizer.convert_tokens_to_ids( | ||
[SEMANTIC_TOKEN, MEL_TOKEN] | ||
) | ||
vq_parts = encoded.vq_parts | ||
vq_parts = torch.cat(vq_parts, dim=1) | ||
values[1:, tokens == semantic_id] = vq_parts | ||
return values | ||
|
||
def visualize(self: "Conversation", tokenizer: AutoTokenizer): | ||
encoded = self.encode(tokenizer, add_shift=False) | ||
|
||
print_in_blue = lambda x: print("\033[94m" + x + "\033[0m", end="") | ||
print_in_green = lambda x: print("\033[92m" + x + "\033[0m", end="") | ||
|
||
for tok, lab in zip(encoded.tokens, encoded.labels): | ||
val = tokenizer.decode(tok, skip_special_tokens=False) | ||
if val == "\n": | ||
val = "\\n\n" | ||
|
||
if lab == -100: | ||
print_in_green(val) | ||
else: | ||
print_in_blue(val) | ||
|
||
print() | ||
|
||
|
||
if __name__ == "__main__": | ||
message0 = Message( | ||
role="user", | ||
parts=[ | ||
TextPart(text="Hello, how are you?"), | ||
VQPart(codes=torch.zeros((4, 10))), | ||
], | ||
cal_loss=False, | ||
) | ||
|
||
message1 = Message( | ||
role="assistant", | ||
parts=[TextPart(text="I'm fine, thank you.")], | ||
cal_loss=True, | ||
) | ||
conversation = Conversation([message0, message1]) | ||
tokenizer = AutoTokenizer.from_pretrained("checkpoints/Qwen2-1.5B-Instruct") | ||
conversation.visualize(tokenizer) | ||
|
||
encoded = conversation.encode(tokenizer) | ||
print(encoded) | ||
print(tokenizer.batch_decode(encoded.tokens)) |
Oops, something went wrong.