(1) DTC_GOT01.py is the example code of GOT01 model (five parameters).
(2) DTC_GOT09.py is the example code of GOT09 model (six parameters).
(3) DTC_GOT09_dT_tao.py is the example code of GOT09-dT-tao model (the recommended four-parameters DTC models), which is applicable for MODIS data.
(4) DTC_GEM.py is the example code of GEM-type models (including GEM-eta and GEM-sigma models, four parameters).
(1) ATC_Enhance.py is the example code of Enhanced ATC model, which is modified from Zou et al.(2018).
(2) Example_ATC_data.xlsx is the example data for the Enhance ATC model.
For any questions, feel free to contact Mr. Falu Hong (hongfalu@foxmail.com)
(1) Göttsche, F. M., Olesen, F. S. (2001). Modelling of diurnal cycles of brightness temperature extracted from METEOSAT data. Remote Sensing of Environment, 76(3), 337-348.
(2) Göttsche, F. M., Olesen, F. S. (2009). Modelling the effect of optical thickness on diurnal cycles of land surface temperature. Remote Sensing of Environment, 113(11), 2306-2316.
(3) Hong, F., Zhan, W., Göttsche, F.-M., Liu, Z., Zhou, J., Huang, F., Lai, J., Li, M. (2018). Comprehensive assessment of four-parameter diurnal land surface temperature cycle models under clear-sky. ISPRS Journal of Photogrammetry and Remote Sensing, 142, 190-204.
(1) XUE, Y., & CRACKNELL, A. P. (1995). Advanced thermal inertia modelling. International Journal of Remote Sensing, 16(3), 431–446.
(2) Zhan, W., Chen, Y., Voogt, J., Zhou, J., Wang, J., Liu, W., & Ma, W. (2012). Interpolating diurnal surface temperatures of an urban facet using sporadic thermal observations. Building and environment, 57, 239-252.
(3) Huang, F., Zhan, W., Duan, S. B., Ju, W., & Quan, J. (2014). A generic framework for modeling diurnal land surface temperatures with remotely sensed thermal observations under clear sky. Remote sensing of environment, 150, 140-151.
(4) Zhan, W., Zhou, J., Ju, W., Li, M., Sandholt, I., Voogt, J., & Yu, C. (2014). Remotely sensed soil temperatures beneath snow-free skin-surface using thermal observations from tandem polar-orbiting satellites: An analytical three-time-scale model. Remote sensing of environment, 143, 1-14.
(5) Hong, F., Zhan, W., Göttsche, F.-M., Liu, Z., Zhou, J., Huang, F., Lai, J., Li, M. (2018). Comprehensive assessment of four-parameter diurnal land surface temperature cycle models under clear-sky. ISPRS Journal of Photogrammetry and Remote Sensing, 142, 190-204.
(1) Bechtel, B. (2012). Robustness of annual cycle parameters to characterize the urban thermal landscapes. IEEE Geoscience and Remote Sensing Letters, 9(5), 876-880.
(2) Zou, Z., Zhan, W., Liu, Z., Bechtel, B., Gao, L., Hong, F., ... & Lai, J. (2018). Enhanced modeling of annual temperature cycles with temporally discrete remotely sensed thermal observations. Remote Sensing, 10(4), 650.
(3) Liu, Z., Zhan, W., Lai, J., Hong, F., Quan, J., Bechtel, B., ... & Zou, Z. (2019). Balancing prediction accuracy and generalization ability: A hybrid framework for modelling the annual dynamics of satellite-derived land surface temperatures. ISPRS journal of photogrammetry and remote sensing, 151, 189-206.