This project aims to develop a program to detect objects with datasets(a random set of images). The first method is SIFT Feature Matching. SIFT is a feature detection algorithm to detect the image features. This project used the feature matching method to find out the similarity. The second method is SSIM who consider image luminance, contrast and structure to evaluate similarity.
- Clone this project
- Put your datasets and test images into folder Images and Queires respectivily
- Run the main program
Object_Detection.ipynb
with jupyterlab
Dataset Image Format: 0001.jpg, 0002.jpg, 0003.jpg, ... , 9999.jpg
Test Image Format : 01.jpg, 02.jpg, 03.jpg, ... , 99.jpg
.
├── Images # Datasets folder
│ ├── 0001.jpg
│ ├── 0002.jpg
│ ├── ...
├── Queries # Test files folder
│ ├── 01.jpg
│ ├── 02.jpg
│ ├── ...
└── Object_Detection.ipynb # Main Program
Dataset Size: 5000 images
Item | SIFT | SSIM |
---|---|---|
Mean average precision | 0.332950 | 0.011360 |
Time | 2.5 hr | 20 mins |
- SIFT is too slow for matching. It should combine with Bag of Word.