Python implementation of our paper Cost-Sensitive Label Embedding for Multi-Label Classification and related algorithms, including:
- Cost-Sensitive Label Embedding with Multidimensional Scaling (CLEMS)
- Condensed Filter Tree (CFT)
- Probabilistic Classifier Chains (PCC)
- Classifier Chains (CC)
- Binary Relevance (BR)
If you find our paper or implementation is useful in your research, please consider citing our paper for CLEMS and the references below for other algorithms.
@article{Huang2017clems,
author = {Kuan-Hao Huang and
Hsuan-Tien Lin},
title = {Cost-sensitive label embedding for multi-label classification},
journal = {Machine Learning},
volume = {106},
number = {9-10},
pages = {1725--1746},
year = {2017},
}
- Python 2.7.12
- NumPy 1.13.3
- scikit-learn 0.17
$ python demo.py
- scene (downloaded from Mulan)
- Hamming loss
- Rank loss
- F1 score
- Accuracy score
============================================================
algorithm hamming_loss rank_loss f1_score accuracy_score
============================================================
BR 0.0907 1.1844 0.5742 0.5627
CC 0.0880 1.1424 0.5947 0.5851
PCC 0.0900 0.6898 0.7460 0.6909
CFT 0.0867 0.9460 0.6478 0.6267
CLEMS 0.0825 0.6553 0.7690 0.7600
============================================================
-
Grigorios Tsoumakas and Ioannis Katakis. Multi-Label Classification: An Overview. International Journal of Data Warehousing and Mining, 2007.
-
Jesse Read, Bernhard, Pfahringer, Geoff Holmes, and Eibe Frank. Classifier chains for multi-label classification. Machine Learning, 2011
-
Krzysztof Dembczynski, Weiwei Cheng, and Eyke Hullermeier. Bayes Optimal Multilabel Classification via Probabilistic Classifier Chains. ICML, 2012.
-
Chun-Liang Li and Hsuan-Tien Lin. Condensed Filter Tree for Cost-Sensitive Multi-Label Classification. ICML, 2014.
-
Kuan-Hao Huang and Hsuan-Tien Lin. Cost-Sensitive Label Embedding for Multi-Label Classification. Machine Learning, 2017
Kuan-Hao Huang / @ej0cl6