Skip to content

dhrithideshpande/RNA-seq

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RNA-seq

Tool Year Published Notable Features Programming language Package manager Required expertise Software

Type of URL

1. Web services designed to host source code

2. Others (e.g personal and/or university web services)

a. Data quality control

iSeqQC1 2020 Expression-based raw data QC tool that detects outliers R N/A ++ https://github.com/gkumar09/iSeqQC 1
qsmooth2 2018 Adaptive smooth quantile normalization R Bioconductor ++ http://bioconductor.org/packages/release/bioc/html/qsmooth.html 1
FastQC3 2018 Raw data QC tool for for high throughput sequence data Java Anaconda ++ https://github.com/s-andrews/fastqc/ 1
QC34 2014 Raw data QC tool detecting batch effect and cross contamination Perl, R Anaconda ++ https://github.com/slzhao/QC3 1
kPAL5 2014 Alignment-free assessment raw data QC tool by analyzing k-mer frequencies Python Anaconda ++ https://github.com/LUMC/kPAL 1
HTQC6 2013 Raw data QC read assessment and filtration C++ N/A +++ https://sourceforge.net/projects/htqc/ 1
Trimmomatic7 2014 Trimming of reads and removal of adapters Java Anaconda ++ http://www.usadellab.org/cms/index.php?page=trimmomatic 2
Skewer8 2014 Adapter trimming of reads C++ Anaconda ++ https://sourceforge.net/projects/skewer 1
Flexbar9 2012 Trimming of reads and adaptor removal C++ Anaconda ++ https://github.com/seqan/flexbar 1
QuaCRS10 2014 Post QC tool by performing meta-analyses on QC metrics across large numbers of samples. Python N/A +++ https://github.com/kwkroll32/QuaCRS 1
BlackOPs11 2013 Post QC tool that simulates experimental RNA-seq derived from the reference genome and aligns these sequences and outputs a blacklist of positions and alleles caused by mismapping Perl N/A +++ https://sourceforge.net/projects/rnaseqvariantbl/ 1
RSeQC12 2012

Post QC evaluation of different aspects of RNA-seq

experiments, such as sequence quality, GC bias, nucleotide composition bias, sequencing depth, strand specificity, coverage uniformity and read distribution over the genome structure.

Python, C Anaconda ++ http://rseqc.sourceforge.net/ 1
RNA-SeQC13 2012 RNA-seq metrics for post- quality control and process optimization Java Anaconda ++ https://software.broadinstitute.org/cancer/cga/rna-seqc 2
Seqbias14 2012 Post QC tool using a graphical model to increase accuracy of de novo gene annotation, uniformity of read coverage, consistency of nucleotide frequencies and agreement with qRT-PCR R Anaconda, Bioconductor ++ http://master.bioconductor.org/packages/devel/bioc/html/seqbias.html 1
SAMStat15 2011 Post QC tool which plotsPost nucleotide overrepresentation and other statistics in mapped and unmapped reads in a html page C N/A +++ http://samstat.sourceforge.net 1
Samtools16 2009 Post QC tool using generic alignment format for storing read alignments against reference sequences and to visualize the Binary/Alignment Map (BAM). C, Perl Anaconda + https://github.com/samtools/samtools 1
b. Read alignment
deSALT17 2019 Long transcriptomic read alignment with de Bruijn graph-based index C Anaconda ++ https://github.com/ydLiu-HIT/deSALT 1
Magic-BLAST18 2018 Aligner for long and short reads through optimization of a spliced alignment score C++ N/A +++ https://ncbi.github.io/magicblast/ 1
Minimap219 2018 Alignment using seed chain alignment procedure C, Python Anaconda ++ https://github.com/lh3/minimap2 1
DART20 2018 Burrows-Wheeler Transform based aligner which adopts partitioning strategy to divide a read into two groups C/C++ Anaconda ++ https://github.com/hsinnan75/DART 1
MMR21 2016 Resolves the mapping location of multi-mapping reads, optimising for locally smooth coverage. C++ N/A +++ https://github.com/ratschlab/mmr 1
ContextMap 222 2015 Allows parallel mapping against several reference genomes Java N/A +++ http://www.bio.ifi.lmu.de/ContextMap 2
HISAT23 2015 Aligning reads using an indexing scheme based on the Burrows-Wheeler transform and the Ferragina-Manzini (FM) index C++ Anaconda ++ http://www.ccb.jhu.edu/software/hisat/index.shtml 2
Segemehl24 2014 Multi-split mapping for circular RNA, trans-splicing, and fusion events in addition to performing splice alignment C, C++, Perl, Python, Shell (Bash) Anaconda ++ (http://www.bioinf.uni-leipzig.de/Software/segemehl/). 2
JAGuaR25 2014 Uses a modified GTF (Gene Transfer Format) of known splice sites to build the complete sequence from all reads mapped to the transcript. Python N/A +++ https://www.bcgsc.ca/resources/software/jaguar 2
CRAC26 2013 Uses double K-mer indexing and profiling approach to map reads, predict SNPs, gene fusions, repeat borders. C++ Anaconda ++ http://crac.gforge.inria.fr/ 2
STAR27 2013 Aligns long reads against genome reference database C++ Anaconda ++ https://github.com/alexdobin/STAR 1
Subread28 2013 Mapping reads to a reference genome using multi-seed strategy, called seed-and-vote C, R Anaconda, Bioconductor ++ https://bioconductor.org/packages/release/bioc/html/Rsubread.html 1
TopHat229 2013 Alignment of transcriptomes in the presence of insertions, deletions and gene fusions C++, Python Anaconda ++ http://ccb.jhu.edu/software/tophat/index.shtml 2
OSA30 2012 K-mer profiling approach to map reads C# N/A +++ http://www.arrayserver.com/wiki/index.php?title=OSA 2
PASSion31 2012 Pattern growth pipeline for splice junction detection C++, Perl, Shell (Bash) N/A +++ https://trac.nbic.nl/passion/ 2
RUM32 2011 Comparative analysis of RNA-seq alignment algorithms and the RNA-seq unified mapper Perl, Python N/A +++ http://www.cbil.upenn.edu/RUM/ 2
SOAPSplice33 2011 Ab initio detection of splice junctions Perl Anaconda ++ http://soap.genomics.org.cn/soapsplice.html 2
MapSplice34 2010 De novo detection of splice junctions C++ Anaconda ++ https://github.com/LiuBioinfo/MapSplice 1
SpliceMap35 2010 De novo detection of splice junctions and RNA-seq alignment C++ Anaconda ++ http://web.stanford.edu/group/wonglab/SpliceMap/ 2
Supersplat36 2010 De novo detection of splice junctions C++ N/A +++ http://mocklerlab.org/tools/1/manual 2
HMMSplicer37 2010 Detection of splice junctions of short sequence reads Python N/A +++ http://derisilab.ucsf.edu/software/hmmsplicer 2
QPALMA38 2008 Spliced alignments of short sequence reads. C++, Python N/A +++ http://www.raetschlab.org/suppl/qpalma 2
c. Gene annotations
SQANTI39 2018 Analyses quality of long reads transcriptomes and removes artefacts. Python Anaconda ++ https://github.com/ConesaLab/SQANTI 1
Annocript40 2015 Databases are downloaded to annotate protein coding transcripts with the prediction of putative long non-coding RNAs in whole transcriptomes. Perl, Python, R N/A +++ https://github.com/frankMusacchia/Annocript 1
CIRI41 2015 De novo circular RNA identification Perl N/A +++ https://sourceforge.net/projects/ciri/ 1
TSSAR42 2014 Automated de novo TSS annotation from differential RNA-seq data Java, Perl, R Anaconda ++ http://rna.tbi.univie.ac.at/TSSAR 2
d. Transcriptome assembly
FLAIR43 2020 Full-length alternative isoform analysis of RNA Python Anaconda ++ https://github.com/BrooksLabUCSC/FLAIR 1
Scallop44 2017 Splice-graph-decomposition algorithm which optimizes two competing objectives while satisfying all phasing constraints posed by reads spanning multiple vertices C++ Anaconda +++ https://github.com/Kingsford-Group/scallop 1
CLASS245 2016 Splice variant annotation C++, Perl, Shell Anaconda ++ https://sourceforge.net/projects/splicebox/ 1
StringTie46 2015 Applies a network flow algorithm originally developed in optimization theory, together with optional de novo assembly, to assemble transcripts C++ N/A +++ http://ccb.jhu.edu/software/stringtie 2
Bridger47 2015 De novo transcript assembler using a mathematical model, called the minimum path cover C++, Perl N/A +++ https://sourceforge.net/projects/rnaseqassembly/files/?source=navbar 1
Bayesembler48 2014 Reference genome guided transcriptome assembly built on a Bayesian model C++ N/A +++ https://github.com/bioinformatics-centre/bayesembler. 1
SEECER49 2013 De novo transcriptome assembly using hidden Markov Model (HMM) based method C++ N/A +++ http://sb.cs.cmu.edu/seecer/ 2
BRANCH50 2013 De novo transcriptome assemblies by using genomic information that can be partial or complete genome sequences from the same or a related organism. C++ N/A +++ https://github.com/baoe/BRANCH 1
EBARDenovo51 2013 De novo transcriptome assembly uses an efficient chimera-detection function C# N/A +++ https://sourceforge.net/projects/ebardenovo/ 1
Oases52 2012 De novo transcriptome assembly using k-mer profiling and building a de Brujin graph C N/A +++ https://github.com/dzerbino/oases/tree/master 1
Cufflinks53 2012 Ab initio transcript assembly, estimates their abundances, and tests for differential expression C++ N/A +++ https://github.com/cole-trapnell-lab/cufflinks 1
IsoInfer54 2011 Infer isoforms from short reads C/C++ N/A +++ http://www.cs.ucr.edu/~jianxing/IsoInfer.html 2
IsoLasso55 2011 Reference genome guided using LASSO regression approach C++ N/A +++ http://alumni.cs.ucr.edu/~liw/isolasso.html 2
Trinity56 2011 De novo transcriptome assembly C++, Java, Perl, R, Shell (Bash) Anaconda ++ https://github.com/trinityrnaseq/trinityrnaseq/wiki 1
Trans-ABySS57 2010 De novo short-read transcriptome assembly and can also be used for fusion detection Python N/A +++ https://github.com/bcgsc/transabyss 1
Scripture58 2010 Ab initio reconstruction of transcriptomes of pluripotent and lineage committed cells Java N/A +++ www.broadinstitute.org/software/Scripture/ 2
e. Transcriptome quantification
TALON59 2019 Long-read transcriptome discovery and quantification Python N/A +++ https://github.com/dewyman/TALON 1
Salmon60 2017 Composed of: lightweight-mapping model, an online phase that estimates initial expression levels and model parameters, and an offline phase that refines expression estimates models, and mesures sequence-specific, fragment GC, and positional biases C++ Anaconda ++ https://github.com/COMBINE-lab/Salmon 1
Kallisto61 2016 K-mer based pseudoalignment for allligment free transcript and gene expression quantification C, C++, Perl Anaconda ++ https://github.com/pachterlab/kallisto 1
Wub62 2016 Sequence and error simulation tool to calculate read and genome assembly accuracy. Python Anaconda ++ https://github.com/nanoporetech/wub 1
Rcount63 2015 GUI based tool used for quantification using counts per feature Web based tool N/A + https://github.com/MWSchmid/Rcount 1
Ht-seq64 2015 Calculates gene counts by counting number of reads overlapping genes Python pip ++ https://htseq.readthedocs.io/en/release_0.11.1/overview.html 2
EMSAR65 2015 Estimation by mappability-based segmentation and reclustering using a joint Poisson model C N/A +++ https://github.com/parklab/emsar 1
Maxcounts66 2014 Quantify the expression assigned to an exon as the maximum of its per-base counts C++ N/A +++ http://sysbiobig.dei.unipd.it/?q=Software#MAXCOUNTS 2
FIXSEQ67 2014 A nonparametric and universal method for processing per-base sequencing read count data. R N/A ++ https://bitbucket.org/thashim/fixseq/src/master/ 1
Sailfish68 2014 EM based quantification using statistical coupling between k-mers. C, C++ Anaconda ++ https://github.com/kingsfordgroup/sailfish 1
Casper69 2014 Bayesian modeling framework to quantify alternative splicing. R Anaconda, Bioconductor ++ http://www.bioconductor.org/packages/release/bioc/html/casper.html 1
MaLTA70 2014 Simultaneous transcriptome assembly and quantification from Ion Torrent RNA-Seq data. C++ N/A +++ http://alan.cs.gsu.edu/NGS/?q=malta 2
Featurecounts71 2014 Read summarization program for counting reads generated. R N/A ++ http://subread.sourceforge.net/ 1
MITIE72 2013 Transcript reconstruction and assembly from RNA-Seq data using mixed integer optimisation. MATLAB, C++ N/A +++ https://github.com/ratschlab/MiTie 1
iReckon73 2013 EM-based method to accurately estimate the abundances of known and novel isoforms. Java N/A +++ http://compbio.cs.toronto.edu/ireckon/ 2
eXpress74 2013 Online EM based algorithm for quantification which considers one read at a time. C++, Shell (Bash) Anaconda ++ https://pachterlab.github.io/eXpress/manual.html 1
BitSeq75 2012 Bayesian transcript expression quantification and differential expression. C++, R Anaconda,Bioconductor ++ http://bitseq.github.io/ 1
IQSeq76 2012 Integrated isoform quantification analysis. C++ N/A +++ http://archive.gersteinlab.org/proj/rnaseq/IQSeq/ 2
CEM77 2012 Statistical framework for both transcriptome assembly and isoform expression level estimation. Python N/A +++ http://alumni.cs.ucr.edu/~liw/cem.html 2
SAMMate78 2011 Analysis of differential gene and isoform expression. Java N/A +++ http://sammate.sourceforge.net/ 1
Isoformex79 2011 Estimation method to estimate the expression levels of transcript isoforms. N/A N/A N/A http://bioinformatics.wistar.upenn.edu/isoformex 2
IsoEM80 2011 EM based method for inference of isoform and gene-specific expression levels Java N/A +++ http://dna.engr.uconn.edu/software/IsoEM/. 2
RSEM81 2011 Ab initio EM based method for inference of isoform and gene-specific expression levels C++, Perl, Python, R Anaconda ++ https://github.com/deweylab/RSEM 1
EDASeq82 2011

Within-lane GC-content normalization, between-sample normalization, visualization.

R Anaconda, Bioconductor ++ https://bioconductor.org/packages/devel/bioc/html/EDASeq.html 1
MMSEQ83 2011 Haplotype and isoform specific expression estimation C++, R, Ruby, Shell (Bash) N/A ++ https://github.com/eturro/mmseq 1
MISO84 2010 Statistical model that estimates expression of alternatively spliced exons and isoforms C, Python N/A +++ https://miso.readthedocs.io/en/fastmiso/#latest-version-from-github 2
SOLAS85 2010 Prediction of alternative isoforms from exon expression levels R N/A ++ http://cmb.molgen.mpg.de/2ndGenerationSequencing/Solas/ 2
Rseq86 2009 Statistical inferences for isoform expression C++ N/A +++ http://www-personal.umich.edu/~jianghui/rseq/#download 2
rQuant87 2009 Estimating density biases and considering the read coverages at each nucleotide independently using quadratic programming Matlab, Shell (Bash), Javascript N/A +++ https://galaxy.inf.ethz.ch/?tool_id=rquantweb&version=2.2&__identifer=3iuqb8nb3wf 2
ERANGE88 2008 Mapping and quantifying mammalian transcripts Python N/A +++ http://woldlab.caltech.edu/rnaseq 2
f. Differential expression
Swish89 2019 Non-parametric model for differential expression analysis using inferential replicate counts R Bioconductor ++ https://bioconductor.org/packages/release/bioc/html/fishpond.html 1
Yanagi90 2019 Transcriptome segment analysis Python/C++ N/A +++ https://github.com/HCBravoLab/yanagi 1
Whippet91 2018 Quantification of transcriptome structure and gene expression analysis using EM. Julia N/A +++ 1
ReQTL92 2018 Identifies correlations between SNVs and gene expression from RNA-seq data R N/A ++ https://github.com/HorvathLab/ReQTL 1
vast-tools93 2017 Profiling and comparing alternative splicing events in RNA-Seq data and for downstream analyses of alternative splicing. R, Perl N/A +++ 1
Ballgown94 2015 Linear model–based differential expression analyses R Anaconda, Bioconductor ++ https://github.com/alyssafrazee/ballgown 1
Limma/Voom95 2014 Linear model-based differential expression and differential splicing analyses R Anaconda, Bioconductor ++ https://bioconductor.org/packages/release/bioc/html/limma.html 1
rMATS96 2014 Detect major differential alternative splicing types in RNA-seq data with replicates. Python, C++ Anaconda ++ 1
DESeq297 2014 Differential analysis of count data, using shrinkage estimation for dispersions and fold changes R Bioconductor, CRAN ++ https://bioconductor.org/packages/release/bioc/html/DESeq2.html 1
Corset98 2014 Differential gene expression analysis for de novo assembled transcriptomes C++ Anaconda ++ https://github.com/Oshlack/Corset/wiki 1
BADGE99 2014 Bayesian model for accurate abundance quantification and differential analysis Matlab N/A +++ http://www.cbil.ece.vt.edu/software.htm 2
compcodeR100 2014 Benchmarking of differential expression analysis methods R Anaconda, Bioconductor ++ https://www.bioconductor.org/packages/compcodeR/ 1
metaRNASeq101 2014 Differential meta-analyses of RNA-seq data R Anaconda, CRAN ++ http://cran.r-project.org/web/packages/metaRNASeq 1
Characteristic Direction102 2014 Geometrical multivariate approach to identify differentially expressed genes R, Python, MATLAB N/A ++ http://www.maayanlab.net/CD 2
HTSFilter103 2013 Filter-replicated high-throughput transcriptome sequencing data R Anaconda, Bioconductor ++ http://www.bioconductor.org/packages/release/bioc/html/HTSFilter.html 1
NPEBSeq104 2013 Nonparametric empirical bayesian-based procedure for differential expression analysis R N/A ++ http://bioinformatics.wistar.upenn.edu/NPEBseq 2
EBSeq105 2013 Identifying differentially expressed isoforms. R Anaconda, Bioconductor ++ http://bioconductor.org/packages/release/bioc/html/EBSeq.html 1
sSeq106 2013 Shrinkage estimation of dispersion in Negative Binomial models R Anaconda, Bioconductor ++ http://bioconductor.org/packages/release/bioc/html/sSeq.html 1
Cuffdiff2107 2013 Differential analysis at transcript resolution C++, Python N/A +++ http://cole-trapnell-lab.github.io/cufflinks/cuffdiff/ 1
SAMseq108 2013 Nonparametric method with resampling to account for the different sequencing depths R CRAN ++ https://rdrr.io/cran/samr/man/SAMseq.html 1
DSGseq 109 2013 NB-statistic method that can detect differentially spliced genes between two groups of samples without using a prior knowledge on the annotation of alternative splicing. R N/A ++ http://bioinfo.au.tsinghua.edu.cn/software/DSGseq/ 2
NOISeq110 2011 Uses a non-parametric approach for differential expression analysis and can work in absence of replicates R Bioconductor ++ https://bioconductor.org/packages/release/bioc/html/NOISeq.html 1
EdgeR111 2010 Examining differential expression of replicated count data and differential exon usage R Anaconda, Bioconductor ++ https://bioconductor.org/packages/release/bioc/html/edgeR.html 1
DEGseq112 2010 Identify differentially expressed genes or isoforms for RNA-seq data from different samples. R Bioconductor ++ http://bioconductor.org/packages/release/bioc/html/DEGseq.html 1
g. RNA splicing

LeafCutter113 2018 Detects differential splicing and maps quantitative trait loci (sQTLs). R Anaconda ++ https://github.com/davidaknowles/leafcutter.git 1
MAJIQ-SPEL114 2018 Visualization, interpretation, and experimental validation of both classical and complex splicing variation and automated RT-PCR primer design. C++, Python N/A +++ https://galaxy.biociphers.org/galaxy/root?tool_id=majiq_spel 2
MAJIQ115 2016 Web-tool that takes as input local splicing variations (LSVs) quantified from RNA-seq data and provides users with a visualization package (VOILA) and quantification of gene isoforms. C++, Python N/A +++ https://majiq.biociphers.org/commercial.php 2
SplAdder116 2016 Identification, quantification, and testing of alternative splicing events Python PyPI +++ http://github.com/ratschlab/spladder 1
SplicePie117 2015 Detection of alternative, non-sequential and recursive splicing Perl, R N/A +++ https://github.com/pulyakhina/splicing_analysis_pipeline 1
SUPPA118 2015 Alternative splicing analysis Python, R Anaconda ++ 1
SNPlice119 2015 Identifying variants that modulate Intron retention Python N/A +++ https://code.google.com/p/snplice/ 1
IUTA120 2014 Detecting differential isoform usage R N/A ++ http://www.niehs.nih.gov/research/resources/software/biostatistics/iuta/index.cfm. 1
SigFuge121 2014 Identifying genomic loci exhibiting differential transcription patterns R Anaconda, Bioconductor ++ http://bioconductor.org/packages/release/bioc/html/SigFuge.html 1
FineSplice122 2014 Splice junction detection and quantification Python N/A +++ https://sourceforge.net/p/finesplice/ 1
PennSeq123 2014 Statistical method that allows each isoform to have its own non-uniform read distribution Perl N/A +++ http://sourceforge.net/projects/pennseq 1
FlipFlop124 2014 RNA isoform identification and quantification with network flows R Anaconda, Bioconductor ++ https://bioconductor.org/packages/release/bioc/html/flipflop.html 1
GESS125 2014 Graph-based exon-skipping scanner for de novo detection of skipping event sites N/A N/A N/A http://jinlab.net/GESS_Web/ 2
spliceR126 2013 Classification of alternative splicing and prediction of coding potential R Anaconda, Bioconductor ++ http://www.bioconductor.org/packages/2.13/bioc/html/spliceR.html 1
RNASeq-MATS127 2013 Detects and analyzes differential alternative splicing events C, Python N/A +++ http://rnaseq-mats.sourceforge.net/ 1
SplicingCompass128 2013 Differential splicing detection R N/A ++ http://www.ichip.de/softwa 2
DiffSplice129 2013 Genome-wide detection of differential splicing C++ N/A +++ http://www.netlab.uky.edu/p/bioinfo/DiffSplice 2
DEXSeq130 2012 Statistical method to test for differential exon usage. R Anaconda, Bioconductor ++ https://bioconductor.org/packages/release/bioc/html/DEXSeq.html 1
SpliceSeq131 2012 Identifies differential splicing events between test and control groups. Java N/A +++ http://bioinformatics.mdanderson.org/main/SpliceSeq:Overview. 2
JuncBASE132 2011 Identification and quantification of alternative splicing, including unannotated splicing Python N/A +++ https://github.com/anbrooks/juncBASE 1
ALEXA-seq133 2010 Alternative expression analysis. Perl, R, Shell (Bash) N/A +++ http://www.alexaplatform.org/alexa_seq/. 1

h. Cell deconvolution

TIMER2.0134 2020 Web server for comprehensive analysis of Tumor-Infiltrating Immune Cells.

Web-tool

R, Javascript

N/A + https://github.com/taiwenli/TIMER 1
CIBERSORTx135 2019

Impute gene expression profiles and provide an

estimation of the abundances of member cell types in a mixed cell population.

Web-tool

Java, R

N/A + https://cibersortx.stanford.edu/ 2
quanTIseq136 2019 Quantify the fractions of ten immune cell types from bulk RNA-sequencing data. R, Shell (Bash) DockerHub + https://icbi.i-med.ac.at/quantiseq 2
Immunedeconv137 2019 Benchmarking of transcriptome-based cell-type quantification methods for immuno-oncology R Anaconda ++ https://github.com/icbi-lab/immunedeconv 1
Linseed138 2019 Deconvolution of cellular mixtures based on linearity of transcriptional signatures. C++, R N/A ++ https://github.com/ctlab/LinSeed 1
deconvSEQ139 2019 Deconvolution of cell mixture distribution based on a generalized linear model. R N/A ++ https://github.com/rosedu1/deconvSeq 1
CDSeq140 2019 Simultaneously estimate both cell-type proportions and cell-type-specific expression profiles. MATLAB, R N/A ++ https://github.com/kkang7/CDSeq_R_Package 1
Dtangle141 2019 Estimates cell type proportions using publicly available, often cross-platform, reference data. R Anaconda,CRAN ++ https://github.com/gjhunt/dtangle 1
GEDIT142 2019 Estimate cell type abundances.

Web based tool

Python, R

N/A + http://webtools.mcdb.ucla.edu/ 2
SaVant143 2017 Web based tool for sample level visualization of molecular signatures in gene expression profiles. Javascript, R N/A +++ http://newpathways.mcdb.ucla.edu/savant 2
EPIC144 2017 Simultaneously estimates the fraction of cancer and immune cell types. R N/A ++ http://epic.gfellerlab.org/ 2
WSCUnmix145 2017 Automated deconvolution of structured mixtures. MATLAB N/A +++ https://github.com/tedroman/WSCUnmix 1
Infino146 2017 Deconvolves bulk RNA-seq into cell type abundances and captures gene expression variability in a Bayesian model to measure deconvolution uncertainty. R, Python Docker Hub ++ https://github.com/hammerlab/infino 1
MCP-counter147 2016 Estimating the population abundance of tissue-infiltrating immune and stromal cell populations. R N/A + https://github.com/ebecht/MCPcounter 1
CellCode148 2015 Latent variable approach to differential expression analysis for heterogeneous cell populations. R N/A ++ http://www.pitt.edu/~mchikina/CellCODE/ 2
PERT149 2012 Probabilistic expression deconvolution method. MATLAB N/A +++ https://github.com/gquon/PERT 1

i. Immune repertoire profiling

ImReP150 2018 Profiling immunoglobulin repertoires across multiple human tissues. Python N/A +++ https://github.com/mandricigor/imrep/wiki 1
TRUST (T cell)151 2016 Landscape of tumor-infiltrating T cell repertoire of human cancers. Perl N/A +++ https://github.com/liulab-dfci/TRUST4 1
V’DJer 152 2016 Assembly-based inference of B-cell receptor repertoires from short reads with V’DJer. C, C++ Anaconda ++ https://github.com/mozack/vdjer 1
IgBlast-based pipeline153 2016 Statistical inference of a convergent antibody repertoire response. C++ N/A +++ https://www.ncbi.nlm.nih.gov/igblast/ 1
MiXCR154 2015 Processes big immunome data from raw sequences to quantitated clonotypes. Java Anaconda ++ https://github.com/milaboratory/mixcr 1

j. Allele specific expression

EAGLE155 2017 Bayesian model for identifying GxE interactions based on associations between environmental variables and allele-specific expression. C++, R N/A ++ https://github.com/davidaknowles/eagle 1
ANEVA-DOT/ANEVA156 2019 Identify ASE outlier genes / Quantify genetic variation in gene dosage from ASE data. R N/A ++ https://github.com/PejLab/ANEVA-DOT 1
aFC157 2017 Quantifying the regulatory effect size of cis-acting genetic variation Python N/A +++ https://github.com/secastel/aFC 1
phASER158 2016 Uses readback phasing to produce haplotype level ASE data (as opposed to SNP level) Python N/A +++ https://github.com/secastel/phaser 1
RASQUAL159 2016 Maps QTLs for sequenced based cellular traits by combining population and allele-specific signals. C, R N/A +++ https://github.com/natsuhiko/rasqual 1
allelecounter160 2015 Generate ASE data from RNAseq data and a genotype file. Python N/A +++ https://github.com/secastel/allelecounter 1
WASP161 2015 Unbiased allele-specific read mapping and discovery of molecular QTLs

C

Python

Anaconda ++ https://github.com/bmvdgeijn/WASP/ 1
Mamba162 2015 Compares different patterns of ASE across tissues R N/A ++ http://www.well.ox.ac.uk/~rivas/mamba/. 2
MBASED 163 2014 Allele-specific expression detection in cancer tissues and cell lines R Anaconda, Bioconductor ++ https://bioconductor.org/packages/release/bioc/html/MBASED.html 1
Allim164 2013 Estimates allele-specific gene expression. Python, R N/A +++ https://sourceforge.net/projects/allim/ 1
AlleleSeq165 2011 Identifies allele-specific events in mapped reads between maternal and paternal alleles. Python, Shell N/A +++ http://alleleseq.gersteinlab.org/ 2

k. Viral detection

ROP166 2018 Dumpster diving in RNA-sequencing to find the source of 1 trillion reads across diverse adult human tissues Python, Shell (Bash) Anaconda ++ https://github.com/smangul1/rop 1
RNA CoMPASS167 2014 Simultaneous analysis of transcriptomes and metatranscriptomes from diverse biological specimens. Perl, Shell, Java N/A ++ http://rnacompass.sourceforge.net/ 1
VirusSeq168 2013 Identify viruses and their integration sites using next-generation sequencing of human cancer tissues Perl, Shell (Bash) N/A +++ http://odin.mdacc.tmc.edu/∼xsu1/VirusSeq.html 2
VirusFinder169 2013 Detection of Viruses and Their Integration Sites in Host Genomes through Next Generation Sequencing Data Perl N/A +++ http://bioinfo.mc.vanderbilt.edu/VirusFinder/ 2

l. Fusion detection

INTEGRATE-Vis170 2017

Generates plots focused on annotating each gene fusion at the transcript-

and protein-level and assessing expression across samples.

Python N/A +++ https://github.com/ChrisMaherLab/INTEGRATE-Vis 1
INTEGRATE-Neo171 2017

Gene fusion neoantigen discovery tool, which uses RNA-Seq reads and is capable of

reporting tumor-specific peptides recognizable by immune molecules.

Python, C++ N/A +++ https://github.com/ChrisMaherLab/INTEGRATE-Neo 1
INTEGRATE172 2016 Capable of integrating aligned RNA-seq and WGS reads and characterizes the quality of predictions. C++ N/A +++ https://sourceforge.net/projects/integrate-fusion/ 1
TRUP173 2015 Combines split-read and read-pair analysis with de novo regional assembly for the identification of chimeric transcripts in cancer specimens. C++, Perl, R N/A +++ https://github.com/ruping/TRUP 1
PRADA174 2014 Detect gene fusions but also performs alignments, transcriptome quantification; mainly integrated genome/transcriptome read mapping. Python Anaconda ++ http://sourceforge.net/projects/prada/ 1
Pegasus175 2014 Annotation and prediction of biologically functional gene fusion candidates. Java, Perl, Python, Shell (Bash) N/A +++ https://github.com/RabadanLab/Pegasus 1
FusionCatcher176 2014 Finding somatic fusion genes Python Anaconda ++ https://sourceforge.net/projects/fusioncatcher/ 1
FusionQ177 2013 Gene fusion detection and quantification from paired-end RNA-seq C++, Perl, R N/A +++ http://www.wakehealth.edu/CTSB/Software/Software.htm 2
Barnacle178 2013 Detecting and characterizing tandem duplications and fusions in de novo transcriptome assemblies Python, Perl N/A +++ http://www.bcgsc.ca/platform/bioinfo/software/barnacle 2
Dissect179 2012 Detection and characterization of structural alterations in transcribed sequences C N/A +++ http://dissect-trans.sourceforge.net 1
BreakFusion180 2012 Targeted assembly-based identification of gene fusions C++, Perl N/A +++ https://bioinformatics.mdanderson.org/public-software/breakfusion/ 2
EricScript181 2012 Identification of gene fusion products in paired-end RNA-seq data. Perl, R, Shell (Bash) Anaconda ++ http://ericscript.sourceforge.net 1
Bellerophontes182 2012 Chimeric transcripts discovery based on fusion model. Java, Perl, Shell (Bash) N/A +++ http://eda.polito.it/bellerophontes/ 2
GFML183 2012 Standard format for organizing and representing the significant features of gene fusion data. XML N/A + http://code.google.com/p/gfml-prototype/ 1
FusionHunter184 2011 Identifies fusion transcripts from transcriptional analysis. C++ N/A +++ https://github.com/ma-compbio/FusionHunter 1
ChimeraScan185 2011 Identifying chimeric transcription. Python Anaconda ++ https://code.google.com/archive/p/chimerascan/downloads 1
TopHat-fusion186 2011 Discovery of novel fusion transcripts. C++, Python N/A +++ http://ccb.jhu.edu/software/tophat/fusion_index.shtml 2
deFuse187 2011 Fusion discovery in tumor RNA-seq data. C++, Perl, R Anaconda ++ https://github.com/amcpherson/defuse/blob/master/README.md 1

m. Detecting circRNA

CIRIquant188 2020 Accurate quantification and differential expression analysis of circRNAs. Python PyPI ++ https://sourceforge.net/projects/ciri/files/CIRIquant 1
CIRI-vis189 2020 Visualization of circRNA structures. Java N/A +++ https://sourceforge.net/projects/ciri/files/CIRI-vis 1
Ularcirc190 2019 Analysis and visualisation of canonical and back splice junctions. R Bioconductor ++ https://github.com/VCCRI/Ularcirc 1
CLEAR191 2019 Circular and Linear RNA expression analysis. Python N/A +++ https://github.com/YangLab/CLEAR 1
CIRI-full192 2019 Reconstruct and quantify full-length circular RNAs. Java N/A +++ https://sourceforge.net/projects/ciri/files/CIRI-full 1
circAST193 2019 Full-length assembly and quantification of alternatively spliced isoforms in Circular RNAs Python N/A +++ https://github.com/xiaofengsong/CircAST 1
CIRI2194 2018 Denovo circRNA identification Pearl N/A +++ https://sourceforge.net/projects/ciri/files/CIRI2 1
Sailfish-cir195 2017 Quantification of circRNAs using model-based framework Python N/A +++ https://github.com/zerodel/sailfish-cir 1
CircComPara196 2017 Multi‐method detection of circRNAs R, Python N/A +++ http://github.com/egaffo/CirComPara 1
UROBORUS197 2016 Computationally identifying circRNAs from RNA-seq data Perl N/A +++ https://github.com/WGLab/UROBORUS/tree/master/bin 1
PTESFinder198 2016 Identification of non-co-linear transcripts Shell, Java N/A +++ https://sourceforge.net/projects/ptesfinder-v1/ 1
NCLscan199 2016 identification of non-co-linear transcripts (fusion, trans-splicing and circular RNA) Python N/A +++ https://github.com/TreesLab/NCLscan 1
DCC200 2016 Specific identification and quantification of circRNA Python N/A +++ https://github.com/dieterich-lab/DCC 1
CIRI-AS201 2016 Identification of internal structure and alternative splicing events in circRNA Perl N/A +++ https://sourceforge.net/projects/ciri/files/CIRI-AS 1
circTest200 2016 Differential expression analysis and plotting of circRNAs R N/A +++ https://github.com/dieterich-lab/CircTest 1
CIRCexplorer2202 2016 Annotation and de novo assembly of circRNAs Python Anaconda ++ https://github.com/YangLab/CIRCexplorer2 1
KNIFE 203 2015 Statistically based detection of circular and linear isoforms from RNA-seq data Perl, Python, R N/A +++ https://github.com/lindaszabo/KNIFE 1
circRNA_finder204 2014 Identification of circRNAs from RNA-seq data Perl N/A +++ https://github.com/orzechoj/circRNA_finder 1
find_circ205 2013 Identification of circRNAs based on head-to-tail spliced sequencing reads Python PyPI ++ https://github.com/marvin-jens/find_circ 1

n. Small RNA detection

miRTrace206 2018 Quality control of miRNA-seq data, identifies cross-species contamination. Java Anaconda +++ https://github.com/friedlanderlab/mirtrace 1
sRNAbench207 2015 Expression profiling of small RNAs, prediction of novel microRNAs, analysis of isomiRs, genome mapping and read length statistics. Web based tool N/A + https://bioinfo5.ugr.es/srnatoolbox/srnabench/ 2
sRNAde207 2015 Detection of differentially expressed small RNAs based on three programs. Web based tool N/A + https://bioinfo5.ugr.es/srnatoolbox/srnade/ 2
sRNAblast207 2015 Aimed to determine the origin of unmapped or unassigned reads by means of a blast search against several remote databases. Web based tool N/A + https://bioinfo5.ugr.es/srnatoolbox/srnablast/ 2
miRNAconsTarget207 2015 Consensus target prediction on user provided input data. Web based tool N/A + https://bioinfo5.ugr.es/srnatoolbox/amirconstarget/ 2
sRNAjBrowser207 2015 Visualization of sRNA expression data in a genome context. Web based tool N/A + https://bioinfo5.ugr.es/srnatoolbox/srnajbrowser/ 2
sRNAjBrowserDE207 2015 Visualization of differential expression as a function of read length in a genome context. Web based tool N/A + https://bioinfo5.ugr.es/srnatoolbox/srnajbrowserde/ 2
ShortStack208 2013 Analyzes reference-aligned sRNA-seq data and performs. comprehensive de novo annotation and quantification of the inferred sRNA genes. Perl Anaconda +++ https://github.com/MikeAxtell/ShortStack 1
mirTools 2.0209 2013 Detect, identify and profile various types, functional annotation and differentially expressed sRNAs. Web based tool N/A + http://www.wzgenomics.cn/mr2_dev/ 2
UEA sRNA Workbench210 2012 Complete analysis of single or multiple-sample small RNA datasets. Web based tool, C++, Java N/A +++ https://sourceforge.net/projects/srnaworkbench/ 1
miRDeep2211 2011 Discovers known and novel miRNAs, quantifies miRNA expression. Perl Anaconda +++ https://github.com/rajewsky-lab/mirdeep2 1
miRanalyzer212 2011 Detection of known and prediction of new microRNAs in high-throughput sequencing experiments. Web based tool N/A + http://bioinfo2.ugr.es/miRanalyzer/miRanalyzer.php 2
SeqBuster213 2010 Provides an automatized pre-analysis for sequence annotation for analysing small RNA data from Illumina sequencing. Web based tool Anaconda + http://estivill_lab.crg.es/seqbuster 2
DARIO214 2010 Allows to study short read data and provides a wide range of analysis features, including quality control, read normalization, and quantification. Web based tool N/A + http://dario.bioinf.uni-leipzig.de/index.py 2

o. Visualization tools

BEAVR215 2020 Facilitates interactive analysis and exploration of RNA-seq data, allowing statistical testing and visualization of the table of differentially expressed genes obtained. R Docker Hub ++ https://github.com/developerpiru/BEAVR 1
coseq216 2018 Co-expression analysis of sequencing data R Anaconda, Bioconductor ++ https://bioconductor.org/packages/release/bioc/html/coseq.html 1
ReadXplorer217 2016 Read mapping analysis and visualization Java N/A +++ https://www.uni-giessen.de/fbz/fb08/Inst/bioinformatik/software/ReadXplorer 2
Integrated Genome Browser218 2016 An interactive tool for visually analyzing tiling array data and enables quantification of alternative splicing Java N/A +++ http://www.bioviz.org/ 2
Sashimi plots219 2015 Quantitative visualization comparison of exon usage Python N/A ++ http://miso.readthedocs.org/en/fastmiso/sashimi.html 2
ASTALAVISTA220 2015 Reports all alternative splicing events reflected by transcript annotations Java Anaconda ++ http://astalavista.sammeth.net/ 2
RNASeqBrowser221 2015 Incorporates and extends the functionality of the UCSC genome browser Java N/A +++ http://www.australianprostatecentre.org/research/software/rnaseqbrowser 2
SplicePlot222 2014 Visualizing splicing quantitative trait loci Python N/A +++ http://montgomerylab.stanford.edu/spliceplot/index.html 2
RNASeqViewer223 2014 Compare gene expression and alternative splicing Python N/A +++ https://sourceforge.net/projects/rnaseqbrowser/ 1
PrimerSeq224 2014 Systematic design and visualization of RT-PCR primers using RNA seq data Java, C++, Python N/A +++ http://primerseq.sourceforge.net/ 1
Epiviz225 2014 Combining algorithmic-statistical analysis and interactive visualization R Anaconda, Bioconductor ++ https://epiviz.github.io/ 1
RNAbrowse226 2014 RNA-seq De Novo Assembly Results Browser N/A N/A N/A http://bioinfo.genotoul.fr/RNAbrowse 2
ZENBU227 2014 Interactive visualization and analysis of large-scale sequencing datasets C++, Javascript N/A + https://fantom.gsc.riken.jp/zenbu/ 2
CummeRbund53 2012 Navigate through data produced from a Cuffdiff RNA-seq differential expression analysis R Anaconda, Bioconductor ++ http://bioconductor.org/packages/devel/bioc/html/cummeRbund.html 1
Splicing Viewer228 2012 Visualization of splice junctions and alternative splicing Java N/A +++ http://bioinformatics.zj.cn/splicingviewer. 2

Table 1: Landscape of current computational methods for RNA-seq analysis. We categorized RNA-seq tools published from 2008 to 2020 based on processes in the RNA-seq pipeline and workflow; starting with data quality control, read alignment, gene annotations, transcriptome assembly, transcriptome quantification, differential expression, RNA splicing, cell deconvolution, immune repertoire profiling, allele specific expression, viral detection, fusion detection, detecting circRNA, small RNA detection, and visualization tools. The third column ("Notable Features") presents key functionalities and methods used. The fourth column ("Programing Language") presents the interface mode (e.g., GUI, web-based, programming language). The fifth column ("Package Manager") highlights if a package manager such as Anaconda, Bioconductor, CRAN, Docker Hub, pip, or PyPI is available for the tool. We designated the assumed expertise level with a +, ++, or +++ in the sixth column ("Required Expertise"). A "+" represents little to no required expertise which would be assigned to a GUI based/web interface tool. "++" was assigned to tools that require R and/or multiple programming languages and whose software is located on Anaconda, Bioconductor, CRAN, Docker Hub, pip, or PyPI. "+++" was assigned to tools that require expertise in languages such as C, C++, Java, Python, Perl, or Shell (Bash) and may or may not have a package manager present. For each tool, we provide the links where the published tool software can be found and downloaded ("Software"). In the seventh column ("Type of URL"), each tool was assigned a "1" for web services designed to host source code or "2" for others (e.g personal and/or university web services).

Methods

Determine features of RNA-seq tools

We compiled 228 RNA-seq tools published between 2008 and 2020 which have varying purposes and capabilities based on the type of analysis one is conducting or the biological questions one is answering. We have considered 15 domains of RNA-seq analysis (data quality control, read alignment, gene annotations, transcriptome assembly, transcriptome quantification, differential expression, RNA splicing, cell deconvolution, immune repertoire profiling, allele specific expression, viral detection, fusion detection, detecting circRNA, small RNA detection, and visualization tools). After assigning each tool a category based on its area of application, we highlighted each tool's ("Notable Features"). These notable features encompassed a range of functionalities: purpose of the tool, which features made the tool unique or not unique within its category and the way in which the tool would take RNA-seq data as an input and present an output. We documented whether each tool was web-based or required one or many programming languages for installation and/or utilization ("Programming Language"). In addition to the programming languages, we highlighted whether a package manager (e.g., Anaconda, Bioconductor, CRAN, Docker Hub, pip, or PyPI) was available. Based on the combination of which programming language was required and which package manager was available for each tool, we assessed the required expertise needed to be able to install or run the tool. If the tool was a web-based tool with no package manager available or a web-based tool along with programming languages and package manager present, we assigned the tool the little to none required expertise of "+". If the tool required only R as a programming language or along with other programming languages and had a package manager present, the tool was assigned a required expertise of "++". In addition, if programming languages other than R were required, and a package manager was present, the tool was also assigned a "++". Lastly, for tools that required a single programming language (other than R) or multiple programming languages required and presence of no package manager were assigned a "+++" for the most required expertise. Each published tool had a designated software link where the tool can be downloaded and installed. Based on the type of URL of the software links, we assigned the tools a "1" or "2". An assignment of "1" meant that the tool's software was hosted on a web service designed to host source code. An assignment of "2" meant that the tool's software was hosted on other web services (e.g personal and/or university web services).

References

  1. Kumar, G., Ertel, A., Feldman, G., Kupper, J. & Fortina, P. iSeqQC: a tool for expression-based quality control in RNA sequencing. BMC Bioinformatics 21, 56 (2020).

  2. Hicks, S. C. et al. Smooth quantile normalization. Biostatistics 19, 185--198 (2018).

  3. Babraham Bioinformatics - FastQC A Quality Control tool for High Throughput Sequence Data.

4. Guo, Y. et al. Multi-perspective quality control of Illumina exome sequencing data using QC3. Genomics 103, 323--328 (2014).

5. Anvar, S. Y. et al. Determining the quality and complexity of next-generation sequencing data without a reference genome. Genome Biol. 15, 555 (2014).

6. Yang, X. et al. HTQC: a fast quality control toolkit for Illumina sequencing data. BMC Bioinformatics 14, 33 (2013).

7. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114--2120 (2014).

8. Jiang, H., Lei, R., Ding, S.-W. & Zhu, S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics 15, 182 (2014).

9. Dodt, M., Roehr, J., Ahmed, R. & Dieterich, C. FLEXBAR---Flexible Barcode and Adapter Processing for Next-Generation Sequencing Platforms. Biology vol. 1 895--905 (2012).

10. Kroll, K. W. et al. Quality Control for RNA-Seq (QuaCRS): An Integrated Quality Control Pipeline. Cancer Inform. 13, 7--14 (2014).

11. Cabanski, C. R. et al. BlackOPs: increasing confidence in variant detection through mappability filtering. Nucleic Acids Res. 41, e178 (2013).

12. Wang, L., Wang, S. & Li, W. RSeQC: quality control of RNA-seq experiments. Bioinformatics 28, 2184--2185 (2012).

13. DeLuca, D. S. et al. RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics 28, 1530--1532 (2012).

14. Jones, D. C., Ruzzo, W. L., Peng, X. & Katze, M. G. A new approach to bias correction in RNA-Seq. Bioinformatics 28, 921--928 (2012).

15. Lassmann, T., Hayashizaki, Y. & Daub, C. O. SAMStat: monitoring biases in next generation sequencing data. Bioinformatics 27, 130--131 (2011).

16. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078--2079 (2009).

17. Liu, B. et al. deSALT: fast and accurate long transcriptomic read alignment with de Bruijn graph-based index. doi:10.1101/612176.

18. Boratyn, G. M., Thierry-Mieg, J., Thierry-Mieg, D., Busby, B. & Madden, T. L. Magic-BLAST, an accurate DNA and RNA-seq aligner for long and short reads. doi:10.1101/390013.

19. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094--3100 (2018).

20. Lin, H.-N. & Hsu, W.-L. DART: a fast and accurate RNA-seq mapper with a partitioning strategy. Bioinformatics vol. 34 190--197 (2018).

21. Kahles, A., Behr, J. & Rätsch, G. MMR: a tool for read multi-mapper resolution. Bioinformatics 32, 770--772 (2016).

22. Bonfert, T., Kirner, E., Csaba, G., Zimmer, R. & Friedel, C. C. ContextMap 2: fast and accurate context-based RNA-seq mapping. BMC Bioinformatics 16, 122 (2015).

23. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357--360 (2015).

24. Hoffmann, S. et al. A multi-split mapping algorithm for circular RNA, splicing, trans-splicing and fusion detection. Genome Biol. 15, R34 (2014).

25. Butterfield, Y. S. et al. JAGuaR: junction alignments to genome for RNA-seq reads. PLoS One 9, e102398 (2014).

26. Philippe, N., Salson, M., Commes, T. & Rivals, E. CRAC: an integrated approach to the analysis of RNA-seq reads. Genome Biol. 14, R30 (2013).

27. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15--21 (2013).

28. Liao, Y., Smyth, G. K. & Shi, W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 41, e108 (2013).

29. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

30. Hu, J., Ge, H., Newman, M. & Liu, K. OSA: a fast and accurate alignment tool for RNA-Seq. Bioinformatics vol. 28 1933--1934 (2012).

31. Zhang, Y. et al. PASSion: a pattern growth algorithm-based pipeline for splice junction detection in paired-end RNA-Seq data. Bioinformatics 28, 479--486 (2012).

32. Grant, G. R. et al. Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM). Bioinformatics 27, 2518--2528 (2011).

33. Huang, S. et al. SOAPsplice: Genome-Wide ab initio Detection of Splice Junctions from RNA-Seq Data. Front. Genet. 2, 46 (2011).

34. Wang, K. et al. MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res. 38, e178 (2010).

35. Au, K. F., Jiang, H., Lin, L., Xing, Y. & Wong, W. H. Detection of splice junctions from paired-end RNA-seq data by SpliceMap. Nucleic Acids Res. 38, 4570--4578 (2010).

36. Bryant, D. W., Jr, Shen, R., Priest, H. D., Wong, W.-K. & Mockler, T. C. Supersplat--spliced RNA-seq alignment. Bioinformatics 26, 1500--1505 (2010).

37. Dimon, M. T., Sorber, K. & DeRisi, J. L. HMMSplicer: a tool for efficient and sensitive discovery of known and novel splice junctions in RNA-Seq data. PLoS One 5, e13875 (2010).

38. De Bona, F., Ossowski, S., Schneeberger, K. & Rätsch, G. Optimal spliced alignments of short sequence reads. Bioinformatics 24, i174--80 (2008).

39. Tardaguila, M. et al. SQANTI: extensive characterization of long-read transcript sequences for quality control in full-length transcriptome identification and quantification. Genome Res. (2018) doi:10.1101/gr.222976.117.

40. Musacchia, F., Basu, S., Petrosino, G., Salvemini, M. & Sanges, R. Annocript: a flexible pipeline for the annotation of transcriptomes able to identify putative long noncoding RNAs. Bioinformatics 31, 2199--2201 (2015).

41. Gao, Y., Wang, J. & Zhao, F. CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biology vol. 16 (2015).

42. Amman, F. et al. TSSAR: TSS annotation regime for dRNA-seq data. BMC Bioinformatics 15, 89 (2014).

43. Tang, A. D. et al. Full-length transcript characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns. doi:10.1101/410183.

44. Shao, M. & Kingsford, C. Accurate assembly of transcripts through phase-preserving graph decomposition. Nat. Biotechnol. 35, 1167--1169 (2017).

45. Song, L., Sabunciyan, S. & Florea, L. CLASS2: accurate and efficient splice variant annotation from RNA-seq reads. Nucleic Acids Res. 44, e98 (2016).

46. Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290--295 (2015).

47. Chang, Z. et al. Bridger: a new framework for de novo transcriptome assembly using RNA-seq data. Genome Biology vol. 16 (2015).

48. Maretty, L., Sibbesen, J. A. & Krogh, A. Bayesian transcriptome assembly. Genome Biol. 15, 501 (2014).

49. Le, H.-S., Schulz, M. H., McCauley, B. M., Hinman, V. F. & Bar-Joseph, Z. Probabilistic error correction for RNA sequencing. Nucleic Acids Res. 41, e109 (2013).

50. Bao, E., Jiang, T. & Girke, T. BRANCH: boosting RNA-Seq assemblies with partial or related genomic sequences. Bioinformatics vol. 29 1250--1259 (2013).

51. Chu, H.-T. et al. EBARDenovo: highly accurate de novo assembly of RNA-Seq with efficient chimera-detection. Bioinformatics 29, 1004--1010 (2013).

52. Schulz, M. H., Zerbino, D. R., Vingron, M. & Birney, E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28, 1086--1092 (2012).

53. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562--578 (2012).

54. Feng, J., Li, W. & Jiang, T. Inference of isoforms from short sequence reads. J. Comput. Biol. 18, 305--321 (2011).

55. Li, W., Feng, J. & Jiang, T. IsoLasso: a LASSO regression approach to RNA-Seq based transcriptome assembly. J. Comput. Biol. 18, 1693--1707 (2011).

56. Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644--652 (2011).

57. Robertson, G. et al. De novo assembly and analysis of RNA-seq data. Nat. Methods 7, 909--912 (2010).

58. Guttman, M. et al. Ab initio reconstruction of cell type--specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nature Biotechnology vol. 28 503--510 (2010).

59. Wyman, D. et al. A technology-agnostic long-read analysis pipeline for transcriptome discovery and quantification. doi:10.1101/672931.

60. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417--419 (2017).

61. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525--527 (2016).

62. nanoporetech. nanoporetech/wub. GitHub https://github.com/nanoporetech/wub.

63. Schmid, M. W. & Grossniklaus, U. Rcount: simple and flexible RNA-Seq read counting. Bioinformatics 31, 436--437 (2015).

64. Anders, S., Pyl, P. T. & Huber, W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166--169 (2015).

65. Lee, S., Seo, C. H., Alver, B. H., Lee, S. & Park, P. J. EMSAR: estimation of transcript abundance from RNA-seq data by mappability-based segmentation and reclustering. BMC Bioinformatics 16, 278 (2015).

66. Finotello, F. et al. Reducing bias in RNA sequencing data: a novel approach to compute counts. BMC Bioinformatics vol. 15 S7 (2014).

67. Hashimoto, T. B., Edwards, M. D. & Gifford, D. K. Universal count correction for high-throughput sequencing. PLoS Comput. Biol. 10, e1003494 (2014).

68. Patro, R., Mount, S. M. & Kingsford, C. Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms. Nat. Biotechnol. 32, 462--464 (2014).

69. Rossell, D., Stephan-Otto Attolini, C., Kroiss, M. & Stöcker, A. QUANTIFYING ALTERNATIVE SPLICING FROM PAIRED-END RNA-SEQUENCING DATA. Ann. Appl. Stat. 8, 309--330 (2014).

70. Mangul, S. et al. Transcriptome assembly and quantification from Ion Torrent RNA-Seq data. BMC Genomics 15 Suppl 5, S7 (2014).

71. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923--930 (2014).

72. Behr, J. et al. MITIE: Simultaneous RNA-Seq-based transcript identification and quantification in multiple samples. Bioinformatics 29, 2529--2538 (2013).

73. Mezlini, A. M. et al. iReckon: simultaneous isoform discovery and abundance estimation from RNA-seq data. Genome Res. 23, 519--529 (2013).

74. Roberts, A. & Pachter, L. Streaming fragment assignment for real-time analysis of sequencing experiments. Nat. Methods 10, 71--73 (2013).

75. Glaus, P., Honkela, A. & Rattray, M. Identifying differentially expressed transcripts from RNA-seq data with biological variation. Bioinformatics 28, 1721--1728 (2012).

76. Du, J. et al. IQSeq: integrated isoform quantification analysis based on next-generation sequencing. PLoS One 7, e29175 (2012).

77. Li, W. & Jiang, T. Transcriptome assembly and isoform expression level estimation from biased RNA-Seq reads. Bioinformatics 28, 2914--2921 (2012).

78. Xu, G. et al. SAMMate: a GUI tool for processing short read alignments in SAM/BAM format. Source Code Biol. Med. 6, 2 (2011).

79. Kim, H., Bi, Y., Pal, S., Gupta, R. & Davuluri, R. V. IsoformEx: isoform level gene expression estimation using weighted non-negative least squares from mRNA-Seq data. BMC Bioinformatics 12, 305 (2011).

80. Nicolae, M., Mangul, S., Măndoiu, I. I. & Zelikovsky, A. Estimation of alternative splicing isoform frequencies from RNA-Seq data. Algorithms Mol. Biol. 6, 9 (2011).

81. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics vol. 12 (2011).

82. Risso, D., Schwartz, K., Sherlock, G. & Dudoit, S. GC-Content Normalization for RNA-Seq Data. BMC Bioinformatics 12, 1--17 (2011).

83. Turro, E. et al. Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads. Genome Biol. 12, R13 (2011).

84. Katz, Y., Wang, E. T., Airoldi, E. M. & Burge, C. B. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat. Methods 7, 1009--1015 (2010).

85. Richard, H. et al. Prediction of alternative isoforms from exon expression levels in RNA-Seq experiments. Nucleic Acids Res. 38, e112 (2010).

86. Jiang, H. & Wong, W. H. Statistical inferences for isoform expression in RNA-Seq. Bioinformatics 25, 1026--1032 (2009).

87. Bohnert, R., Behr, J. & Rätsch, G. Transcript quantification with RNA-Seq data. BMC Bioinformatics vol. 10 (2009).

88. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621--628 (2008).

89. Zhu, A., Srivastava, A., Ibrahim, J. G., Patro, R. & Love, M. I. Nonparametric expression analysis using inferential replicate counts. Nucleic Acids Res. 47, e105 (2019).

90. Gunady, M. K., Mount, S. M. & Corrada Bravo, H. Yanagi: Fast and interpretable segment-based alternative splicing and gene expression analysis. BMC Bioinformatics 20, 421 (2019).

91. Sterne-Weiler, T., Weatheritt, R. J., Best, A. J., Ha, K. C. H. & Blencowe, B. J. Efficient and Accurate Quantitative Profiling of Alternative Splicing Patterns of Any Complexity on a Laptop. Mol. Cell 72, 187--200.e6 (2018).

92. Spurr, L. et al. ReQTL -- an allele-level measure of variation-expression genomic relationships. doi:10.1101/464206.

93. Tapial, J. et al. An atlas of alternative splicing profiles and functional associations reveals new regulatory programs and genes that simultaneously express multiple major isoforms. Genome Res. 27, 1759--1768 (2017).

94. Frazee, A. C. et al. Ballgown bridges the gap between transcriptome assembly and expression analysis. Nat. Biotechnol. 33, 243--246 (2015).

95. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).

96. Shen, S. et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc. Natl. Acad. Sci. U. S. A. 111, E5593--601 (2014).

97. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

98. Davidson, N. M. & Oshlack, A. Corset: enabling differential gene expression analysis for de novoassembled transcriptomes. Genome Biology vol. 15 (2014).

99. Gu, J., Wang, X., Halakivi-Clarke, L., Clarke, R. & Xuan, J. BADGE: a novel Bayesian model for accurate abundance quantification and differential analysis of RNA-Seq data. BMC Bioinformatics 15 Suppl 9, S6 (2014).

100. Soneson, C. compcodeR--an R package for benchmarking differential expression methods for RNA-seq data. Bioinformatics vol. 30 2517--2518 (2014).

101. Rau, A., Marot, G. & Jaffrézic, F. Differential meta-analysis of RNA-seq data from multiple studies. BMC Bioinformatics 15, 91 (2014).

102. Clark, N. R. et al. The characteristic direction: a geometrical approach to identify differentially expressed genes. BMC Bioinformatics 15, 79 (2014).

103. Rau, A., Gallopin, M., Celeux, G. & Jaffrézic, F. Data-based filtering for replicated high-throughput transcriptome sequencing experiments. Bioinformatics 29, 2146--2152 (2013).

104. Bi, Y. & Davuluri, R. V. NPEBseq: nonparametric empirical bayesian-based procedure for differential expression analysis of RNA-seq data. BMC Bioinformatics 14, 262 (2013).

105. Leng, N. et al. EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics 29, 1035--1043 (2013).

106. Yu, D., Huber, W. & Vitek, O. Shrinkage estimation of dispersion in Negative Binomial models for RNA-seq experiments with small sample size. Bioinformatics 29, 1275--1282 (2013).

107. Trapnell, C. et al. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 31, 46--53 (2013).

108. Li, J. & Tibshirani, R. Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-Seq data. Stat. Methods Med. Res. 22, 519--536 (2013).

109. Wang, W., Qin, Z., Feng, Z., Wang, X. & Zhang, X. Identifying differentially spliced genes from two groups of RNA-seq samples. Gene 518, 164--170 (2013).

110. Tarazona, S., García-Alcalde, F., Dopazo, J., Ferrer, A. & Conesa, A. Differential expression in RNA-seq: a matter of depth. Genome Res. 21, 2213--2223 (2011).

111. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139--140 (2010).

112. Wang, L., Feng, Z., Wang, X., Wang, X. & Zhang, X. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics vol. 26 136--138 (2010).

113. Li, Y. I. et al. Annotation-free quantification of RNA splicing using LeafCutter. Nat. Genet. 50, 151--158 (2018).

114. Green, C. J., Gazzara, M. R. & Barash, Y. MAJIQ-SPEL: web-tool to interrogate classical and complex splicing variations from RNA-Seq data. Bioinformatics 34, 300--302 (2018).

115. Vaquero-Garcia, J. et al. A new view of transcriptome complexity and regulation through the lens of local splicing variations. Elife 5, e11752 (2016).

116. Kahles, A., Ong, C. S., Zhong, Y. & Rätsch, G. SplAdder: identification, quantification and testing of alternative splicing events from RNA-Seq data. Bioinformatics 32, 1840--1847 (2016).

117. Pulyakhina, I. et al. SplicePie: a novel analytical approach for the detection of alternative, non-sequential and recursive splicing. Nucleic Acids Res. 43, 11068 (2015).

118. Alamancos, G. P., Pagès, A., Trincado, J. L., Bellora, N. & Eyras, E. Leveraging transcript quantification for fast computation of alternative splicing profiles. RNA 21, 1521--1531 (2015).

119. Mudvari, P. et al. SNPlice: variants that modulate Intron retention from RNA-sequencing data. Bioinformatics 31, 1191--1198 (2015).

120. Niu, L., Huang, W., Umbach, D. M. & Li, L. IUTA: a tool for effectively detecting differential isoform usage from RNA-Seq data. BMC Genomics 15, 862 (2014).

121. Kimes, P. K. et al. SigFuge: single gene clustering of RNA-seq reveals differential isoform usage among cancer samples. Nucleic Acids Res. 42, e113 (2014).

122. Gatto, A. et al. FineSplice, enhanced splice junction detection and quantification: a novel pipeline based on the assessment of diverse RNA-Seq alignment solutions. Nucleic Acids Res. 42, e71 (2014).

123. Hu, Y. et al. PennSeq: accurate isoform-specific gene expression quantification in RNA-Seq by modeling non-uniform read distribution. Nucleic Acids Res. 42, e20 (2014).

124. Bernard, E., Jacob, L., Mairal, J. & Vert, J.-P. Efficient RNA isoform identification and quantification from RNA-Seq data with network flows. Bioinformatics 30, 2447--2455 (2014).

125. Ye, Z. et al. Computational analysis reveals a correlation of exon-skipping events with splicing, transcription and epigenetic factors. Nucleic Acids Res. 42, 2856--2869 (2014).

126. Vitting-Seerup, K., Porse, B. T., Sandelin, A. & Waage, J. E. spliceR: An R package for classification of alternative splicing and prediction of coding potential from RNA-seq data. doi:10.7287/peerj.preprints.80.

127. Park, J. W., Tokheim, C., Shen, S. & Xing, Y. Identifying differential alternative splicing events from RNA sequencing data using RNASeq-MATS. Methods Mol. Biol. 1038, 171--179 (2013).

128. Aschoff, M. et al. SplicingCompass: differential splicing detection using RNA-seq data. Bioinformatics 29, 1141--1148 (2013).

129. Hu, Y. et al. DiffSplice: the genome-wide detection of differential splicing events with RNA-seq. Nucleic Acids Res. 41, e39 (2013).

130. Anders, S., Reyes, A. & Huber, W. Detecting differential usage of exons from RNA-seq data. Genome Res. 22, 2008--2017 (2012).

131. Ryan, M. C., Cleland, J., Kim, R., Wong, W. C. & Weinstein, J. N. SpliceSeq: a resource for analysis and visualization of RNA-Seq data on alternative splicing and its functional impacts. Bioinformatics 28, 2385--2387 (2012).

132. Brooks, A. N. et al. Conservation of an RNA regulatory map between Drosophila and mammals. Genome Res. 21, 193--202 (2011).

133. Griffith, M. et al. Alternative expression analysis by RNA sequencing. Nat. Methods 7, 843--847 (2010).

134. Li, T. et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. (2020) doi:10.1093/nar/gkaa407.

135. Newman, A. M. et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 37, 773--782 (2019).

136. Finotello, F. et al. Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med. 11, 34 (2019).

137. Sturm, G. et al. Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology. Bioinformatics 35, i436--i445 (2019).

138. Zaitsev, K., Bambouskova, M., Swain, A. & Artyomov, M. N. Complete deconvolution of cellular mixtures based on linearity of transcriptional signatures. Nat. Commun. 10, 2209 (2019).

139. Du, R., Carey, V. & Weiss, S. T. deconvSeq: deconvolution of cell mixture distribution in sequencing data. Bioinformatics 35, 5095--5102 (2019).

140. Kang, K. et al. CDSeq: A novel complete deconvolution method for dissecting heterogeneous samples using gene expression data. PLoS Comput. Biol. 15, e1007510 (2019).

141. Hunt, G. J., Freytag, S., Bahlo, M. & Gagnon-Bartsch, J. A. dtangle: accurate and robust cell type deconvolution. Bioinformatics 35, 2093--2099 (2019).

142. Nadel, B. et al. The Gene Expression Deconvolution Interactive Tool (GEDIT): Accurate Cell Type Quantification from Gene Expression Data. doi:10.1101/728493.

143. Lopez, D. et al. SaVanT: a web-based tool for the sample-level visualization of molecular signatures in gene expression profiles. BMC Genomics vol. 18 (2017).

144. Racle, J., de Jonge, K., Baumgaertner, P., Speiser, D. E. & Gfeller, D. Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. Elife 6, (2017).

145. Roman, T., Xie, L. & Schwartz, R. Automated deconvolution of structured mixtures from heterogeneous tumor genomic data. PLoS Comput. Biol. 13, e1005815 (2017).

146. Zaslavsky, M., Novik, J. B., Chang, E. & Hammerbacher, J. Infino: a Bayesian hierarchical model improves estimates of immune infiltration into tumor microenvironment. doi:10.1101/221671.

147. Becht, E. et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 17, 218 (2016).

148. Chikina, M., Zaslavsky, E. & Sealfon, S. C. CellCODE: a robust latent variable approach to differential expression analysis for heterogeneous cell populations. Bioinformatics 31, 1584--1591 (2015).

149. Qiao, W. et al. PERT: A Method for Expression Deconvolution of Human Blood Samples from Varied Microenvironmental and Developmental Conditions. PLoS Computational Biology vol. 8 e1002838 (2012).

150. Mangul, S. et al. Profiling immunoglobulin repertoires across multiple human tissues by RNA Sequencing. doi:10.1101/089235.

151. Li, B. et al. Landscape of tumor-infiltrating T cell repertoire of human cancers. Nature Genetics vol. 48 725--732 (2016).

152. Mose, L. E. et al. Assembly-based inference of B-cell receptor repertoires from short read RNA sequencing data with V'DJer. Bioinformatics vol. 32 3729--3734 (2016).

153. Strauli, N. B. & Hernandez, R. D. Statistical inference of a convergent antibody repertoire response to influenza vaccine. Genome Med. 8, 60 (2016).

154. Bolotin, D. A. et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat. Methods 12, 380--381 (2015).

155. Knowles, D. A. et al. Allele-specific expression reveals interactions between genetic variation and environment. Nat. Methods 14, 699--702 (2017).

156. Mohammadi, P. et al. Genetic regulatory variation in populations informs transcriptome analysis in rare disease. Science 366, 351--356 (2019).

157. Mohammadi, P., Castel, S. E., Brown, A. A. & Lappalainen, T. Quantifying the regulatory effect size of cis-acting genetic variation using allelic fold change. doi:10.1101/078717.

158. Castel, S. E., Mohammadi, P., Chung, W. K., Shen, Y. & Lappalainen, T. Rare variant phasing and haplotypic expression from RNA sequencing with phASER. Nat. Commun. 7, 12817 (2016).

159. Kumasaka, N., Knights, A. J. & Gaffney, D. J. Fine-mapping cellular QTLs with RASQUAL and ATAC-seq. Nat. Genet. 48, 206--213 (2016).

160. Castel, S. E., Levy-Moonshine, A., Mohammadi, P., Banks, E. & Lappalainen, T. Tools and best practices for data processing in allelic expression analysis. Genome Biol. 16, 195 (2015).

161. van de Geijn, B., McVicker, G., Gilad, Y. & Pritchard, J. K. WASP: allele-specific software for robust molecular quantitative trait locus discovery. Nat. Methods 12, 1061--1063 (2015).

162. Pirinen, M. et al. Assessing allele-specific expression across multiple tissues from RNA-seq read data. Bioinformatics 31, 2497--2504 (2015).

163. Mayba, O. et al. MBASED: allele-specific expression detection in cancer tissues and cell lines. Genome Biol. 15, 405 (2014).

164. Pandey, R. V., Franssen, S. U., Futschik, A. & Schlötterer, C. Allelic imbalance metre (Allim), a new tool for measuring allele-specific gene expression with RNA-seq data. Mol. Ecol. Resour. 13, 740--745 (2013).

165. Rozowsky, J. et al. AlleleSeq: analysis of allele‐specific expression and binding in a network framework. Molecular Systems Biology vol. 7 522 (2011).

166. Mangul, S. et al. ROP: dumpster diving in RNA-sequencing to find the source of 1 trillion reads across diverse adult human tissues. Genome Biol. 19, 36 (2018).

167. Xu, G. et al. RNA CoMPASS: a dual approach for pathogen and host transcriptome analysis of RNA-seq datasets. PLoS One 9, e89445 (2014).

168. Chen, Y. et al. VirusSeq: software to identify viruses and their integration sites using next-generation sequencing of human cancer tissue. Bioinformatics 29, 266--267 (2013).

169. Wang, Q., Jia, P. & Zhao, Z. VirusFinder: software for efficient and accurate detection of viruses and their integration sites in host genomes through next generation sequencing data. PLoS One 8, e64465 (2013).

170. Zhang, J., Gao, T. & Maher, C. A. INTEGRATE-Vis: a tool for comprehensive gene fusion visualization. Sci. Rep. 7, 17808 (2017).

171. Zhang, J., Mardis, E. R. & Maher, C. A. INTEGRATE-neo: a pipeline for personalized gene fusion neoantigen discovery. Bioinformatics 33, 555--557 (2017).

172. Zhang, J. et al. INTEGRATE: gene fusion discovery using whole genome and transcriptome data. Genome Res. 26, 108--118 (2016).

173. Fernandez-Cuesta, L. et al. Identification of novel fusion genes in lung cancer using breakpoint assembly of transcriptome sequencing data. Genome Biol. 16, 7 (2015).

174. Torres-García, W. et al. PRADA: pipeline for RNA sequencing data analysis. Bioinformatics 30, 2224--2226 (2014).

175. Abate, F. et al. Pegasus: a comprehensive annotation and prediction tool for detection of driver gene fusions in cancer. BMC Syst. Biol. 8, 97 (2014).

176. Nicorici, D. et al. FusionCatcher - a tool for finding somatic fusion genes in paired-end RNA-sequencing data. doi:10.1101/011650.

177. Liu, C., Ma, J., Chang, C. J. & Zhou, X. FusionQ: a novel approach for gene fusion detection and quantification from paired-end RNA-Seq. BMC Bioinformatics 14, 193 (2013).

178. Swanson, L. et al. Barnacle: detecting and characterizing tandem duplications and fusions in transcriptome assemblies. BMC Genomics 14, 550 (2013).

179. Yorukoglu, D. et al. Dissect: detection and characterization of novel structural alterations in transcribed sequences. Bioinformatics 28, i179--87 (2012).

180. Chen, K. et al. BreakFusion: targeted assembly-based identification of gene fusions in whole transcriptome paired-end sequencing data. Bioinformatics 28, 1923--1924 (2012).

181. Benelli, M. et al. Discovering chimeric transcripts in paired-end RNA-seq data by using EricScript. Bioinformatics 28, 3232--3239 (2012).

182. Abate, F. et al. Bellerophontes: an RNA-Seq data analysis framework for chimeric transcripts discovery based on accurate fusion model. Bioinformatics 28, 2114--2121 (2012).

183. Kalyana-Sundaram, S., Shanmugam, A. & Chinnaiyan, A. M. Gene Fusion Markup Language: a prototype for exchanging gene fusion data. BMC Bioinformatics vol. 13 269 (2012).

184. Li, Y., Chien, J., Smith, D. I. & Ma, J. FusionHunter: identifying fusion transcripts in cancer using paired-end RNA-seq. Bioinformatics 27, 1708--1710 (2011).

185. Iyer, M. K., Chinnaiyan, A. M. & Maher, C. A. ChimeraScan: a tool for identifying chimeric transcription in sequencing data. Bioinformatics 27, 2903--2904 (2011).

186. Kim, D. & Salzberg, S. L. TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol. 12, R72 (2011).

187. McPherson, A. et al. deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. PLoS Comput. Biol. 7, e1001138 (2011).

188. Zhang, J., Chen, S., Yang, J. & Zhao, F. Accurate quantification of circular RNAs identifies extensive circular isoform switching events. Nat. Commun. 11, 90 (2020).

189. Zheng, Y. & Zhao, F. Visualization of circular RNAs and their internal splicing events from transcriptomic data. Bioinformatics 36, 2934--2935 (2020).

190. Humphreys, D. T., Fossat, N., Demuth, M., Tam, P. P. L. & Ho, J. W. K. Ularcirc: visualization and enhanced analysis of circular RNAs via back and canonical forward splicing. Nucleic Acids Res. 47, e123 (2019).

191. Ma, X.-K. et al. A CLEAR pipeline for direct comparison of circular and linear RNA expression. doi:10.1101/668657.

192. Zheng, Y., Ji, P., Chen, S., Hou, L. & Zhao, F. Reconstruction of full-length circular RNAs enables isoform-level quantification. Genome Med. 11, 2 (2019).

193. Wu, J. et al. CircAST: Full-length Assembly and Quantification of Alternatively Spliced Isoforms in Circular RNAs. Genomics Proteomics Bioinformatics 17, 522--534 (2019).

194. Gao, Y., Zhang, J. & Zhao, F. Circular RNA identification based on multiple seed matching. Brief. Bioinform. 19, 803--810 (2018).

195. Li, M. et al. Quantifying circular RNA expression from RNA-seq data using model-based framework. Bioinformatics 33, 2131--2139 (2017).

196. Gaffo, E., Bonizzato, A., Kronnie, G. & Bortoluzzi, S. CirComPara: A Multi‐Method Comparative Bioinformatics Pipeline to Detect and Study circRNAs from RNA‐seq Data. Non-Coding RNA vol. 3 8 (2017).

197. Song, X. et al. Circular RNA profile in gliomas revealed by identification tool UROBORUS. Nucleic Acids Res. 44, e87 (2016).

198. Izuogu, O. G. et al. PTESFinder: a computational method to identify post-transcriptional exon shuffling (PTES) events. BMC Bioinformatics 17, 31 (2016).

199. Chuang, T.-J. et al. NCLscan: accurate identification of non-co-linear transcripts (fusion, trans-splicing and circular RNA) with a good balance between sensitivity and precision. Nucleic Acids Res. 44, e29 (2016).

200. Cheng, J., Metge, F. & Dieterich, C. Specific identification and quantification of circular RNAs from sequencing data. Bioinformatics 32, 1094--1096 (2016).

201. Gao, Y. et al. Comprehensive identification of internal structure and alternative splicing events in circular RNAs. Nat. Commun. 7, 12060 (2016).

202. Zhang, X.-O. et al. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res. 26, 1277--1287 (2016).

203. Szabo, L. et al. Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol. 16, 126 (2015).

204. Westholm, J. O. et al. Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep. 9, 1966--1980 (2014).

205. Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333--338 (2013).

206. Kang, W. et al. miRTrace reveals the organismal origins of microRNA sequencing data. Genome Biol. 19, 213 (2018).

207. Rueda, A. et al. sRNAtoolbox: an integrated collection of small RNA research tools. Nucleic Acids Res. 43, W467--73 (2015).

208. Axtell, M. J. ShortStack: comprehensive annotation and quantification of small RNA genes. RNA 19, 740--751 (2013).

209. Wu, J. et al. mirTools 2.0 for non-coding RNA discovery, profiling, and functional annotation based on high-throughput sequencing. RNA Biol. 10, 1087--1092 (2013).

210. Stocks, M. B. et al. The UEA sRNA workbench: a suite of tools for analysing and visualizing next generation sequencing microRNA and small RNA datasets. Bioinformatics 28, 2059--2061 (2012).

211. Friedländer, M. R., Mackowiak, S. D., Li, N., Chen, W. & Rajewsky, N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 40, 37--52 (2012).

212. Hackenberg, M., Rodríguez-Ezpeleta, N. & Aransay, A. M. miRanalyzer: an update on the detection and analysis of microRNAs in high-throughput sequencing experiments. Nucleic Acids Res. 39, W132--8 (2011).

213. Pantano, L., Estivill, X. & Martí, E. SeqBuster, a bioinformatic tool for the processing and analysis of small RNAs datasets, reveals ubiquitous miRNA modifications in human embryonic cells. Nucleic Acids Res. 38, e34 (2010).

214. Fasold, M., Langenberger, D., Binder, H., Stadler, P. F. & Hoffmann, S. DARIO: a ncRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Research vol. 39 W112--W117 (2011).

215. Perampalam, P. & Dick, F. A. BEAVR: a browser-based tool for the exploration and visualization of RNA-seq data. BMC Bioinformatics 21, 221 (2020).

216. Rau, A. & Maugis-Rabusseau, C. Transformation and model choice for RNA-seq co-expression analysis. Brief. Bioinform. 19, 425--436 (2018).

217. Hilker, R. et al. ReadXplorer 2---detailed read mapping analysis and visualization from one single source. Bioinformatics vol. 32 3702--3708 (2016).

218. Freese, N. H., Norris, D. C. & Loraine, A. E. Integrated genome browser: visual analytics platform for genomics. Bioinformatics 32, 2089--2095 (2016).

219. Katz, Y. et al. Quantitative visualization of alternative exon expression from RNA-seq data. Bioinformatics 31, 2400--2402 (2015).

220. Foissac, S. & Sammeth, M. Analysis of alternative splicing events in custom gene datasets by AStalavista. Methods Mol. Biol. 1269, 379--392 (2015).

221. An, J. et al. RNASeqBrowser: a genome browser for simultaneous visualization of raw strand specific RNAseq reads and UCSC genome browser custom tracks. BMC Genomics 16, 145 (2015).

222. Wu, E., Nance, T. & Montgomery, S. B. SplicePlot: a utility for visualizing splicing quantitative trait loci. Bioinformatics 30, 1025--1026 (2014).

223. Rogé, X. & Zhang, X. RNAseqViewer: visualization tool for RNA-Seq data. Bioinformatics 30, 891--892 (2014).

224. Tokheim, C., Park, J. W. & Xing, Y. PrimerSeq: Design and visualization of RT-PCR primers for alternative splicing using RNA-seq data. Genomics Proteomics Bioinformatics 12, 105--109 (2014).

225. Chelaru, F., Smith, L., Goldstein, N. & Bravo, H. C. Epiviz: interactive visual analytics for functional genomics data. Nat. Methods 11, 938--940 (2014).

226. Mariette, J. et al. RNAbrowse: RNA-Seq de novo assembly results browser. PLoS One 9, e96821 (2014).

227. Severin, J. et al. Interactive visualization and analysis of large-scale sequencing datasets using ZENBU. Nat. Biotechnol. 32, 217--219 (2014).

228. Liu, Q. et al. Detection, annotation and visualization of alternative splicing from RNA-Seq data with SplicingViewer. Genomics 99, 178--182 (2012).

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%