Skip to content

Code repository for the RNA Seq on GEO Diatom data sets.

Notifications You must be signed in to change notification settings

baliga-lab/RNASeq_Diatom

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Global Search Code Repository

Python Tests

Description

This project manages all the software components related to the Coral Reef Global Search project.

Current pipeline tools

gs_submit <config-file>

Starting point point for the pipeline

System requirements

Installation

Python:

$ pip install globalsearch

Within R:

$ library('devtools')
$ devtools::install_github('https://github.com/baliga-lab/Global_Search.git', ref="main", subdir="code/rpackage")

Configuration format description

Configuration files are in JSON format of the following form

{
  "organisms": [<organism 1>, ...],
  "input_dir": <input directory>,
  "genome_dir": <genome file directory>,
  "output_dir": <output directory>,
  "postrun_output_dir": "<post-run output directory>",
  "log_dir": <log directory>,
  "genome_gff": <GFF file>,
  "genome_fasta": <FASTA file path>,
  "fastq_patterns": ["*_{{readnum}}.fq.*", "*_{{readnum}}.fastq.*"],
  "includes": [<directory name],
  "include_file": <path to file containing included directories>,
  "deduplicate_bam_files": false,
  "rnaseq_algorithm": "star_salmon",
  "star_options": {
     "outFilterMismatchNmax": 10,
     "outFilterMismatchNoverLmax": 0.3,
     "outFilterScoreMinOverLread": 0.66,
     "outFilterMatchNmin": 0,
     "twopassMode": false
  },
  "star_index_options": {
     "runThreadN": 32,
     "genomeChrBinNbits": 16,
     "genomeSAindexNbases": 12
  },
  "sbatch_options": {
     <pipeline_step_name>: {
       "options": [
          <sbatch options>
       ],
       "extras": [
          <additional lines for slurm job script>
       ]
     }
   }
}

About

Code repository for the RNA Seq on GEO Diatom data sets.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 82.0%
  • R 13.5%
  • Shell 4.5%