-
Notifications
You must be signed in to change notification settings - Fork 21
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add DenseClus Implementation notebook for jumpstart #60
Conversation
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
few notes on the analysis, mostly revolving around pulling in some stats to understand what the points in the clusters actually look like. code quality looks good!
"id": "e249ddc3-25ff-436f-96e3-a40064bd7716", | ||
"metadata": {}, | ||
"source": [ | ||
"In the above K-Means implementation using traditional dimension reduction PCA, we can see that the clusters formed using only numeric features are of poor quality. It is beacause KMeans and other such clustering algorithms relies on input features to be numeric and assume that the values are shaped spherical in nature." |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
can we try and get a sense of whether the clusters are valuable using descriptive stats? I think it would be cool to understand number/characteristics of numerical vs categorical clusters, then see characteristics of of denseclus clusters that use information from both.
simplified dummy example:
have numerical clusters with age 25-30 working 40 hours/week, ages 16-20 working 20 hours/week. also have categorical clusters with phd degree and academia, HS education and Entrepreneurship.
I think it would be very interesting to identify and compare these groupings to groupings that we find across both feature sets (ie people 20-30 with BS working 60 hrs/week in private sector). could illustrate that we miss information when we look at the two different sets of features in a silo
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Good idea. Added descriptive stats for numerical vs categorical clusters and also for denseclus clusters that use information from both. Also added some observations there.
}, | ||
{ | ||
"data": { | ||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAKmCAYAAABZkgpjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9Z3gc532vfc/M9o7eCLCDTaxikaguq1i2HDc5cdzkEju2YuWkOLET57wnOZET5yTnxLEVt7iXSHGRpcgqtnohRbFK7A1EJzq295153g+zWADEAgRAgADJ574ukMDUZ2Z3Zn7zr4oQQiCRSCQSiUQiGYU61wOQSCQSiUQimY9IkSSRSCQSiURSBCmSJBKJRCKRSIogRZJEIpFIJBJJEaRIkkgkEolEIimCFEkSiUQikUgkRZAiSSKRSCQSiaQIUiRJJBKJRCKRFEGKJIlEIpFIJJIiSJEkkVwhfOELX2DFihV0dHTMyf4feeQRVqxYwSOPPDIn+5dIJJKpIkWSRDILrFixghUrVrBq1So6OzvHXe5tb3tbYdmdO3de0D6/9rWvsWLFCl5//fUL2o5k6nz4wx9mxYoVcz2MosznsUkk8x0pkiSSWcJisWAYxriWk3379tHU1ITFYrnII5NIJBLJZJAiSSKZJcrKylizZg2PPPIIhmGMmf+LX/wCq9XK9u3b52B0EolEIjkf8hVWIplF7rnnHv7u7/6OHTt2cMMNNxSmx2Ixnn76aW699VZcLte463d3d/Ptb3+bl156iZ6eHtxuNxs3buS+++5j3bp1heVuvfXWglvvIx/5yKhtnDhxYsx2H374YX7605/S0tKC1+vl1ltv5S//8i/x+Xxjlj106BDf+ta32LdvH9FolIqKCm688Ubuu+8+qqqqxizf2trK//2//5fXXnuNbDbLypUr+cM//MPzn6wpEgqF+P73v89zzz1He3s7FouFurq6wthGntfm5ma+/vWv89prrxEKhQgEAlx77bXcd999LF68eNR2v/a1r/Hggw/yox/9iGAwyHe+8x1OnTqF3W5n+/btfOELX6C6uhqAjo4O3vKWtxTWHenW2rp1Kz/+8Y8B8/MBeOyxx/i3f/s3nnvuOXp7e/n0pz/N/fffT09PDz//+c959dVXaW9vJxwOEwgE2Lp1K5/5zGdYvnz5mON/5pln+NGPfsSZM2cIh8P4/X4aGhq4++67+eAHPzjpsUkkkvGRIkkimUXe8Y538H/+z//h5z//+SiR9Pjjj5NIJLjnnnt48skni6575MgRPv7xjxMOh7n++uu54447CAaDPPvss3zgAx/g3//937npppsAUxg999xz7N69m3e/+93U1dWNO6Z//ud/5tVXX+WWW27huuuu4/XXX+fnP/85LS0t/OQnPxm17LPPPsuf/MmfAHDnnXdSW1vL4cOHefjhh3nuued46KGHqK+vLyzf0tLC7/3e7xEKhbjxxhtZtWoVra2t/NEf/RE33nhj0fE88sgj/NVf/RXvfve7+fKXvzyp89re3s69995LZ2cna9as4fd///cxDIPm5mZ+8IMf8P73v78gkt58800+9rGPkUgkeMtb3sLSpUtpamri8ccf57nnnuP73/8+69evH7OP//zP/+T555/n1ltvZcuWLRw8eJCnnnqKY8eO8fjjj2Oz2fD5fHz2s5/lV7/6FZ2dnXz2s58trH/uZ5DJZLj33nsLn6fL5Soss3fvXv7jP/6Dbdu2cccdd+B0OmltbeU3v/kNzz//PA899BCrVq0aNba/+7u/o6KigltvvZWSkhIGBgY4ceIEjzzyCB/84AenNDaJRDIOQiKRzDiNjY3ihhtuEEII8Zd/+ZdizZo1YmBgoDD/3e9+t7j55puFruvi85//vGhsbBQ7duwozM9ms+K2224Ta9euFXv27Bm17e7ubnH99deL7du3i1QqVZj+1a9+VTQ2Nopdu3YVHdPQfm6++WbR2dk5al8f+MAHRGNjo3jjjTcK02OxmNi6datYtWqV2Ldv36htffOb3xSNjY3iox/96KjpH/vYx0RjY6P4wQ9+MGr6M888IxobG0VjY6P45S9/OWreL3/5S9HY2Cg+//nPFx13MX7v935PNDY2im9+85tj5g0MDBTOi67r4s477xSNjY3iiSeeGLXc448/LhobG8Udd9whdF0vTB86jxs3bhTHjx8ftc6f/dmfFd3Whz70IdHY2DjueG+55RbR2Ngo7r33XhGPx8fM7+/vF9FodMz0w4cPi/Xr14uPf/zjo6a/613vEmvWrBH9/f1Fj38qY5NIJOMjY5Ikklnmfe97H9lslsceewyAY8eOceTIEd7znvegqsUvwRdffJG2tjY+9KEPsXnz5lHzqqqq+IM/+AP6+/t57bXXpjye++67j9ra2sLfFouF97znPYDpWhvi2WefJRQK8ba3vY1NmzaN2sbHP/5x6urq2LlzZ8HN193dzY4dO1iwYAEf+tCHRi1/2223sXXr1qLjuf3223nyySf5sz/7s0mN//Dhwxw4cIBVq1bxyU9+csz80tJS7HY7APv376e5uZlNmzbxtre9bdRyd999Nxs3bqSlpYV9+/aN2c5HPvKRMVlh73vf+4DR52kqfP7zny/qXi0rK8Pj8YyZvmbNGq655hp2795NNpstTFcUBYvFUjTov7S0dFpjk0gkY5HuNolkltm8eTOLFy/mF7/4BR/72Mf42c9+hqqqvPe97x13nTfeeAOAzs5Ovva1r42Z39LSAsCZM2e4+eabpzSetWvXjplWU1MDQDgcLkw7duwYANu2bRuzvNVqZcuWLXR2dnLs2DHq6uo4evQoAFdffTWapo1ZZ+vWrezevXvMdK/Xi9frnfT433zzTQCuv/76cUXmZI4BYPv27Rw4cIAjR46wZcuWUfOuuuqqMcsXO0+TxWazsXLlynHnv/jiizz88MMcPnyYYDBILpcbNT8YDFJZWQmYbtwvf/nLvP3tb+ftb387W7ZsYdOmTVIgSSQzjBRJEslF4J577uGf//mfee211/j1r3/N9u3bR1lzziUUCgHw9NNPT7jdRCIx5bEUs1gMiZqRWXjRaBSAioqKotsZmj603ND/ZWVlRZcvLy+f8liLEYlEAIoGjZ/LZI8hFouNmVdMuBU7T5OlvLwcRVGKzvvRj37El770Jfx+P9u3b6empgan04miKDz77LMcP36cTCZTWP5jH/sYJSUl/Od//ic/+tGP+MEPfoCiKGzbto2//Mu/ZM2aNVMen0QiGYsUSRLJReDd7343X/nKV/jCF75AJBLhnnvumXD5oQf017/+9VEZSheToTH09fUVnT80fWi5of8HBgaKLt/f3z8j4xrKwOvp6TnvspM9hmLCcaYZTyDlcjm+9rWvUVFRwSOPPFKwFg0xZFU8l3e96128613vIhKJcODAAZ555hl++ctf8vGPf5ynnnpKWpUkkhlAxiRJJBeBsrIybr75Zrq7uykpKTmv8BnKttq7d++k9zHkepqOlaMYQ9lUxVxkuVyuEMezevXqUf/v27cPXdfHrFNsO9Nh6Nzs3LkTIcSEy050DCOnX6jlZejcFzvu8xEMBolEImzcuHGMQIrH4xw5cmTC9X0+HzfddBMPPPAA7373uwmFQqO+NxcyNonkSueytSTpusHgYHyuhzEhqqpQWupmcDCOYUx8s7+UuRKOs9gxGoagry9aWOaTn/wst9xyJ+Xl5YTDaSANQCplBuSGQonC8uvXb6OubgE//elPWbVqHddee/2YfR4+fJBlyxpxOBwAWCxOAE6ebGbZsrHxNEP7GRyMY7dHR80LhUy3XTyeLoxhw4Zr8Pn8PPHEE7ztbe9m3bp1hWP8yU9+RHt7O5s3b8Vq9dLXF0XT3GzZso09e17nm9/8Lr/7u79f2P4rr7xYECTRaGrUeYnFYgwM9ON2eyblkquqWsjates4dOggX/3q1/nAB0bXhQqHQzgcTux2Ow0NjTQ0LGTfvn387Ge/4pZbbiss98ILz7Jnzx7q6xtoaGikry+KqioF4TXy8xhi6J6SSmVHzXM6TUvUkSOnqakZ60bVdVO4nrs9AMOw4XA4ePPNg7S29hQCu3O5HP/8z/9AMBgs7Hvoc9u1ayebN28dE7jd1dWbH59e2Ne5Y7sSrke4tO87FRWTj9GTzC6XrUi6FFBVBUVRUFXlkruIp8KVcJyTOcba2jpqaydXn8ZisfClL/0zf/7nn+Uv/uJPWLt2HcuWrcDhcNDb282xY0c5e7aTxx57uiCSNm3ajKqqfOtbD9LUdLrgavroR/9gWsfkcrn4q7/6n/zP//kF7r//U9x6620sWtTAG2+8yeuv76KsrIy/+Iu/HrXOn/3Z5/n0pz/GV7/6f9mzZxfLljXS0dHOyy+/wHXX3cCOHa+M2c/LL7/AP/zD33HXXXfzxS/+7aTG9j//599z//1/yNe//lWef/5ZNmzYhBCCjo429ux5nZ/+9BfU1NSiKApf/OLf8ad/+kf8r//11zzzzG9YuHARbW0tvPLKS7hcbv7mb/53wdoy9DlOlauv3sILLzzLF7/4F2zbth273U51dQ1vfevbz7uuqqrcc8/7+clPfsC9976f66+/iWw2y4EDe4lEImzatJn9+0dbFP/2b/8am83OunXrqa6uRQjBwYMHOHbsKI2NK9m8eThQ/dyxOZ1Oli5dyE033X7ZXo9wZdx3JLOPFEkSyTxl2bLl/OAHD/Hwwz9l585XePLJ/0ZVVcrKymlsXMEnPvGH+P2BwvKLFi3mi1/8Wx566Cf86le/IJMxLVXTFUkAN9xwM9/4xnf50Y++z+uvv8bzzz9LaWkZ73rXe/noR/+A8vLRAdH19Q1861s/4Jvf/Bp79+7mwIF9LF26nH/8x/9LKBQsKpKGyA4MYmSyqDbrecdVW1vH9773E3760x/xyisv8sgjP8Nms1FdXcvv/d4HKSkZjsdZs+YqvvOdH/LDH36XvXt3s2PHywQCAW677U4++tFP0NCwaJpnZ5h3vONd9PR08+yzv+U///NH6LrOhg2bJiWSAP7gDz5NIBDg179+jMceewSPx8OWLVv55Cfv47vf/daY5T/96c/y+uu7OHHiBK+9tgObzU51dTWf+cz9vPvd92C1Dp/DYmPbunUrN910+wUft0RyuaOI8zn1L1EuBXebxaJSUuImGIyTy81MHMl85Eo4TnmM08dIpwk+8zwArpWNOJctnbFtTxX5OV4+XMrHKd1t8wcZuC2RSOaUXDgy/HtkbMyORCKRzBVSJEkkkjlFH1GjSC9Sr0gikUjmCimSJBLJnGKk08O/T6M4pkQikcwWUiRJJJI5RYyoJC1yOkLW85Fc5gghMOKx89b5ksw9UiRJJJI5xUhnzvk7Pc6SEsnlgX62nczhA+Q6Wud6KJLzMGMiqbm5mU984hNs2LCBa6+9lgceeIBUKnXe9Z588knuv/9+brjhBlasWMF3v/vdmRqSRCK5BBgrkjLjLCmRXB4MiSP9bPscj0RyPmZEJEUiEe69917i8Thf/epX+fznP8/jjz/O3/zN35x33aeffpr29nZuueWWmRiKRCK5xBjpbgMQ0pIkuYyRLrZLixkpJvnwww8TiUR49NFHC00VNU3jc5/7HJ/5zGdYunT8uidf+cpXCtVu/+u//msmhiORSC4RhBAF95rmcaPH4tKSJLmsEank6L8NHUXV5mg0kvMxI5akl19+mWuvvXZU1+k777wTm83GSy+9NPEAVBkWJZFcseg65Bvyavk2KkZGWpIkly/niiSy2bkZiGRSzIhCaWpqGmMtstlsNDQ00NTUNBO7kEgklyEFq5GqojrNBr0im5vDEUkks4s45yVAZnPOb2bE3RaJRPD5fGOm+3w+wuHwTOxiWlgs89tKpWnqqP8vV66E45THOD0M3XyLVu12LHabOTGXnbNrV36Olw/z9Tj17Gh3soaBNs+fVVcys9rgVggxrY7aM4GqKpSUuOdk31PF53PO9RAuClfCccpjnBrRaJggYHM7cQfcxAALYs6vXfk5Xj7Mt+Psb84x0sHmdlpxXiLPqiuRGRFJPp+PSCQyZno0Gp0waHs2MQxBJDK/q/dqmorP5yQSSaLrl1YDxqlwJRynPMbpkRwwLc2GZiGVNbN+0vEkweDcNKeWn+Plw3w9znR0dOudaDhGyuoaNW2uXxIkw8yISFq6dOmY2KNMJkNbWxvvfe97Z2IX0+JS6fys68YlM9YL4Uo4TnmMUyOXMuMzFJsVI5/hY2Syc34O5ed4+TDfjtPIf+exWiGbRc/kUObR+CSjmRFH6I033siuXbsIBoOFac888wyZTIabbrppJnYhkUguQ4YCtxWbDcVqBUDIbB/JZYowDMjHJKnOvLVIl4kK85kZEUnvf//78Xq93Hfffbzyyis8+uij/P3f/z3veMc7Rrnb/vqv/5rVq1ePWvf06dM8/fTTPP300wCcPHmSp59++rylAyQSyaXPUI0k1WZHtZkiyZAiSXKZUshsU1QUu8P83ZBWpPnMjMUk/fCHP+SBBx7g/vvvx+FwcPfdd/O5z31u1HKGYaCfk+741FNP8eCDDxb+fvTRR3n00Uepq6vj+eefn4nhSSSSecpQtW3VPmxJQtcRhoEia6hJLjfyLwCKzQb5rDshRdK8Zsay2xYvXnzevmtf/vKX+fKXvzxq2v3338/9998/U8OQSOY3Rv4lQVbYBYq728B0uSl2+1wNSyKZFQquZIsVlPxLgCHrJM1nZrUEgEQiyaPnoK8D4vm6Yb5SKK8bvlFeoRgjLUmKgmKxIHI582EiRZLkMkPk8i8FVuuwpVRakuY1V/YdWiK5GBg6dJ0ZFkgAkUHobYcruNmlEKLQzFbNC6Iha5KMS5Jclgy526zWgjVZutvmN1IkSSSzTf9ZSCfNm2LdcqhebE6PhcyfK5QhgQQUXGuK1TRuy9YkksuRUe42aUm6JJAiSSKZTZIxiA6av1cvAocL3D4oqTKnDXaDuDJvkkOZbYrdXqjMXygDkMmMu55EcqkickOWJJsUSZcIMiZJIpkmejJFcO9hkh3dIARdpT4sAT+ax40QBsLQ8boNNAXwloLTM7xyoBIiA5DLQCwM3pI5O465Yqionjoi9kgdEkk5aUmSXIaMdLcNIQO35zVSJEkk0yAXjdP91EvoiVRhWqJ7ALoHCn+7ytxoq6sxdINUSmFU4wFVBV85BLsh3H9liqSheCTHsEiSMUmSyxkx1NzWaoV8ORwZkzS/kSJJIpkiRk6n97nX0BMpLD4PpdduwO5xYc2kGWzpIhNPoqgKJRXm5RXpCBHuaKH6bW7s5SPEkK8Ugj2QTkAqYbririCMZBIA1eEoTBuuui0tSZLLj4K7zWIdztmQImleI0WSRDJFIodOkA1F0Jx2qu68HovbhcWiUlLiRqmqMPtEhfuhvxOhWcjiAEPQ//Ieat95G0q+iBwWK3gCEAtCpB8cDXN6XBcbPW42oNbcw808hwO3pSVJcnkhhBjtbhsqrCxF0rxGBm5LJFMgG4kRPnQSgJJtG7C4i1h/DN0MyAaUkipKr7sa1WEnF4kRO9Uyellfqfl/LHzhsQlCXFIlBfRoFABtxDlUZf82yeXKyG4TI7LbpLttfiNF0gzxy288wncf+N6YtiuSywchBIO73gDDwFFbiWthbfEFgz2m4LHawVeGZrcRWL8SgPDB4wh9xE3R4Qarzcxwi4WLb+98ZNLQ3QzNh8yf7hbIps+72nRI9gfpfuI5Bl/cOe24oUx3DwNP/gY9GgPAUhIozJMxSZLLlSFXG6pqFpJUZcXtSwEpkmYAIQSvPrGDw7uOcObwmbkejmSWSLR2kjrbC6pK6TUbCmnrIxGZFIT6zT/KaiC/jKdxMZrLgZ5IEW/pGF5BUczMNxguFTAVUgnoOAnxyLAlKR42pyXjU9/eBBjZHG2/eZVcJEamb4DkmbZpbSdx/GTBxWApLRmV3aZIS5LkciU3okYSyBIAlwhSJM0AmfRwTZdUcnbe4CVzi5HJEnz9IAD+tY1YfZ4xywghMHraAQEuL7h8hXmKpuJdsQSA6LEmMz5hiCGRlIqbVqHJkkmblbyFYQZ9L2iEBcvB7jJvvN3NkJ2ZekNCCEJ73iQTjhampbt7p7wdI51Gj5kWJOeK5Xg3bRw1XxaTlFyuDJW1UPIiSRnq32gYo+8HknmFFEkzQCY5/CAydPlWMOMYupkBlknPWcxNcN9h9KSZzeZfu6LoMomONkQiZlqHyusKVqQhPCsWg6qS6Q+S7hthNbJYTVEFk7cmCQG9bea5sTuhZon5v90FtUvN3w3ddL1Ns1ilEIJsOEK6p4/I/kMkWjtAUQhsXgdAdjA05Zv7UByS6nLhWr5sVPo/yJgkyWXMUNC2JZ8vpY54/EqRNG+R2W0zQDqVLvq75AIRAkJ9ZozP0IM+H+eDr2z0TWYWSbSdJXaiGc1uoXzrKhQ9Daq90HsJITCCvSR6O82/K+rNcZ6D5rDjXlpP/FQr0WNNOCrLhmd6SyERNUVSafUYgTWGyIApHBXVrOQ9NBYwz0vVItPllkmamXaByikdsxCC8O4DpNo6R02vveFqlOpqQnsPInI5jHQGzTH5RrS5iCmSLD5v0fnKiGKSQoiiLk2J5FKkUCDVeo67DUzL70W6n0mmhhRJM0B6hCUpFU9NsKRk0ggB/Z2mGABQLSB0MyB54CyEeiFQkRdL2sTbugDSvQMkjhyl9up6rC4bpAehI2/tsdrA6oBsGiMfKK2UVCAmKAzpW7mU+KlWEi2d5DYnsbid5gy3zzwOPWeKJbdv3G2Qy8Jgl/l7WTVYbGOXsdqgrBb62mGwBzwlw7EQQLK1g+jBY7gbl+BesXTscXd2FQSSxedFtdvwrlpG2VVLCQbjqC4nRiKJHotPSSQV0v49Y92VMOItG9PlptisRZeTSC41hmsk5b/jI18ADB35OJ6fyE9lBhhpPcqkZM+pGSEWHBZI5XWmGBIGREOmQMplYKALgr1mtWqb03wTE4b5VmYY+d9109pic5htQSyTf+gmWjtQ+topb6wAQJDvuWQYppjJZoZjfhQVd8NCUnY/uj6+6dxWFsBeVU66p5/YiTMENq0prI+3xLT6RAcnFkn9neYY7C6zavd4eEuGLU7BbtPChZlyHHnjCCKTIXrwKI6GWjSnc/Sxn2kFwL1qOd6rzMw8i2X4TdficZPJiyTKS8cfwzkUCkg6HUXnK5pmfo6GYT5UpEiSXC6cE7itKIr5YmToCMNA2kznJ1IkzQCZEcHaI4O4JdNE16H/rPl7aTX480JA0cBfZtYWigZNN1wuYwqLyeJwgacUvIFxLVBCCOJHjuFQk1hKXAhDIEqqUEsrh9fRc5BOmiJJ09C8PlzlftLBOKacGh/vqqWke/qJnmzBv24liiW/TW+peSzxiLl9rcjlGQ+bPwAVCyZ2yymKmWF3tgkiQbOprsVGLhwZ1UA23dWLa8nCwt9GJkOm1xSozoULim56qLaRnkhOeKznYqRMS+vIKttjhm21ItJpGZckuawYDtwecV2rqvkiJzPc5i3SCToDpEdYj9LSknThhEbUGSoWS6MoplBqWAlVC00rk9Nj1hxyesDtR7gDGBY7hi4wsvpwXGQqAf0d0HLUDHxOxkYFTRrZLPF9+3DbM1jsFvScgPpG1PKa0aJKs5jB1v4y8ARQigmacXA11KC5nRipNLHTrcMz7E7zB2GKwHMxdNOKBKar0e4cu8y5DJ0XhGl1AzL9o4PDswOj95Xp6QchsPi8WLzF3WJDAdd6amruZSOZF0nO8ceuytYkkjnASKVIHnqTbG/P7OxgREuSArIMwLxHWpJmgHRy+EEh3W0XSC47bBkaUWeoKIpitvXwBEZNFpkUevOJ0en02RwooPoDKMJAyaZNIRINmmLM5UXoOiI0gKfEvIllDQvW5StnPOZJUVV8a5YT3H2Q8KETeJYvNN1MYAq+vg7TpXhucPpAl3l+LDYoqZ78DkuqzFIB0SCUVpMNmpYoS8BPLhQmGwyNWjwzaIoma8X4bjQt7y4zplDyQuh6wTo0sSXJvC3JgpKSi0m6+Qy5/n5y/f1YysqHr8kZohC4PUIkKapq2p1lQcl5i7QkzQAjA7czMrvtwogMmpYdu2tUnaHJIlIJ9KZjpkCy2lAXLkdbsR6lvAYEGKEQwumHumWme0tRzWDwcD9KLIhmUcllcmRtAazLVs9aULh3qLhkPDm6VYm3xBRBeq7Q2gQwBc5QjFbFgqllwjg9ZkyWMCAaLFS6di4yXWm5cBQxolL8kGXJVjp+APqQJcmYgiVpyIqEphWEUDFkQUnJXKCHhi2qejg049sX55YAANma5BJAiqQZYFTgtoxJmj5CDAsBf/n50+DPXT0eNQVSLgsOJ9rS1ai+EhSbHa2mHrXaDFw2ujsQhoDKeli0GioWkNZthNuC9B7tJuutw1q/cMr7nwqKRcOXr7cUPngCI5cXKYoK5fl2J+E+MzMt1Ae97ea0kqrhmkqT3plSiOsS4X5yUbMSt62yHMVmZsbl8kUihWEULE3WsolEkmkJ0qfwUjAkqDSnY8LUfimSJBcbkc0iRgh+Iz6z1eqFEFDEksSIgpKS+YkUSTPASBebdLddAPEw6Fkz3d/jn9KqRiRoutgMHVwetCWrzEy0ESjl1Sj+UkCgtzWZ1hNVI5PV6N51glDrIPbFi3EumIIr6wLwNi5Cc7vQEymix5uGZ7j9ZswRmFlpA2cBYU4vqZrezjwBUDWUXAarw7wxWzxurAHTWpcNmcIoF4qAYaBYrWge97ib0wqWpPSkC0rqQ5ltE7jaQMYkSS4+RiIx+u8ZFknoeqHW29BLAJjuNnOHUiTNV6RImgHSSVkCACARjJJJXECdqCErki/vBpsEZiuQTozWUyAMFK8fbfGKooHUiqKg1i02awhl0xhdbRjZHH0v7QbDwFlfg2/N8umPf4oomkZg4yoAIgdPYIy0QpbWmG61oWDuslozSH261i1VK8RuOcvcqC4niqZhCZhiNBeKACPikcoCE1p7CpWyDWPSFp/JZLaBjEmSXHyM9Oj71rmi6UIRQ6VCNG10rJN0t817ZOD2DFCsTpKezZHsN9/OXRUBVMvsFTycD5w91MzO7zyJarFwy/94NyUNU6vwTCZlZpqBGbB8HoQQiGgYo7ez0MhVKSlHrVuEMoHAUjQNrX4J+pnjiGAf0fZ+cpEYmstJ2fVXX/QKz+4lDUQOnyQbihI+coqSQt0kZbiy+EyRr5vkCDhJpsxzdK4laSgeyTpBPBKY51GxWRGZLHoyjWorUtDyHAoiaZwaSYVtS3eb5CIj8vdwxeFApFKFel5C18n2dKP5/Wju4pmek9p+vuTGudbt4ew2Gbg9X5EiaQYY2bstl8lw+undnN1zHD1j3uQ1m4WSpXUsuHYNgUXV034Q65kcoZYuomcHiPcMkgrHySXT6JkcqkVDs1lwBDy4yv14a8spWVqL1TXxA2mmOPzrXQhDoGeyHHxsJzfd/66pbWDIiuTymZaecRBCIMKDGH1dZjo/gKqh1i5ECZRN6twqbh9KeTWivxunPUfUqlJ+0xY0+/kf9DONoioENq6m74XXiR49jW/1silVsJ4Sdhe6AZqq4iwx6xwVLEnhqNmrbTAEgG2CeKQhVLsdPZPFSKeB88dJFdL/z2tJku42ycVlyJJkKSkh29WFyKQRuk769CmyZztRrFbc12wfHXQ9FbLFRZIiY5LmPVIkzQBDliSbRWNNoIT2HYcAsDjzQbHJDP3HWuk/1oq3rpyG69dRvmohWM7vUkpH4gycaKf/eBvBM2eHA3zHIdY9ogaOolC6rI7aLSspX9GAos6OlSQViRM+O1D4u/dkB/HBCO7SSWanGfpwY1d/ccuJMAxEqN8UR0Op/aqKUlqJWl499g2t2DaEIDsYJtnVS7K9G3+pitVlo2L9QuyVM2ixmSLOhlpspX4yg2Fip1rxr22cnR0pCplYDqfPgs1hfvcsXjeoKiKXIxcMmxW0AWtp4Lyb0xx29GgMY5LB25N2t+UfRNKSJLlYiLxIUj1esPRBLoeRTJDrM2uLiWyWXH8f1uqa6W1/yN12rsVVutvmPVIkzQDpZBpFgW1LGvDabVjdDla++wbKlteDYgqXrr0n6Np/kmhnP0f+63kcJV4WbF2JunUFYoTlIJfOEunoI9R8lsHTnUQ7R1eTdgQ8+Buq8NSU4izxYXHZsdis6DkdPZMlORgh0Rsi1NJNvDfI4KkOBk914K4qZfEtGylfvXDGXUqDbeaNxFddit3joO/0Wc4ebGb5zesnt4FYyHyTstrAOdoiUbAc9XQMiyPNglpWhVJWNak3O6EbhA+fIHb8DPqI+LHBqJXKVVVYRBYx2IdSNkUX4QyhKAreVUsZ2LGf6PEz+NYsnzVBm+iP4vAG0BSzD55itWPxe8kFw8RPnQFA87gn5T5TRwRvT4bJutsKgds5KZIkF4eh77Bid6A6XRjRCPrg4Cihnu3tnb5IOq+7TYqk+YoUSTNAKplmZXUlJW4nmVyOrZ94O+6KQGG+t6YM7zu2s+iWjXS+fozO3UdJBaOc/s0eTv9mD6pFw+KwmenXiXMeOAr46iooW9lA+YoG3FUlkxY5iYEwXftO0rn7GPGeQQ4//By+BRUsfetWAgtnLoMr2GqKpJKGSvy1pfSdPkv3sbbJiSQhhotH+kan/QvDwDjbggjm51usqBU1KKUVw2bq82Bkc/Q+u4N0j2npUiwajuoKHDWVOOur0dJRjO52jLMtoGmogbmxKLkW1xPccwg9niDd04+jpmLG9yEMg2w4RibqxO5zmOK0pApbWSm5YLjQ0NZePTmxqNrzIil9fpEkdB2ROX8hSRh2t8nAbcnFomBJcthRnU6MaIRsd75OmaaBrqMPDiByuWm53Ia2r9jP+e7LmKR5jxRJM4A1o7Osyny4vtHWxa3+4qnTNo+TxW/ZRMMN6+g51ET/0VZCzV3o2RyZ2HAPLLvPRWBxDSVLaildvgC71zWtcbnK/Cy9YwsN16+jfechOl47QqSjjwPfeYLyVQtZescWXOVTS7UvxpAlqbShkorltRx8dCd9pzrRszm0CYoGApCKm0HbimIGFucR2Qx666nhoOzKWlMgTaG4oxCCgVf3ke4ZQLFaKL1mA+5FC1A0dcQybpR0EhHsx2hvgnQKpbL2ogdwqxYN18I6YqdaiJ9pnxWRpMfiIASpcHKUSLLXVZM43VxYzl43OQE9FUtSoeikqo5KgS6GjEmSXEyEYQxbeuwOVJd5vzXiZiKJtaaW3MAAIpkgN9CPtWrqL5giZd7fFcfodjyyBMD8R4qkC0QIwUKPG0VRaB8M0R2OkkllsE7QvVyzWai9egUN21YR8Lvoau4mHU+DomD3u7E6ZzZw1+qys+S2zdRtW03L8/s5u+8k/cdaGTjRRvWmRuqvWYO76vyBusUQQhDMi6SShZX4aspw+N2kwnEGznRTuaJ4g9QCQ1YkT0mhoatIxEyBlMua1p36ZajeqYu5+Jl2Eq2doCpU3X5d0bijobIAhqIiBnsxejtRknHU+iVT6sc2E7iX1BM71UKitZPSazaMEnMzQS5faTtnqIBiitN0EltFGdbyUrL9g1gryrBVTM6aNh2RpJ6nkCQMlwDAMBC6PuPtISSSkYj0iBhHq3VMX0HN70fRNDKtLWS7uqYskoQQI0TSuZYk87stY5LmL1IkXSC9R5rxO+zkdIOjnWZjxEw6g5vi1iQhBP2tPcRDMRxuB+5NS3GW+rD6Zv8isXtdrHjn9Sy4Zg1Nv93DwMl2M1Zq7wk81aWUNtbjqy3HU1OK3e9BncRDOhmMkY4lUVSVQF05iqJQsbSW9v2n6G/umlAkiUwK4mEUoOXNTgbbDuLzKDSsKEXVVOLhFMdeawflFA6vA3tZAFdVKZ6qEnz1lROKSSOTJbTXDKAPrF81YWC2oihodYswXG6MzhZENITedBRtYeNY8/gsYq8qR3XYMVJp0r0DM25NGhJJmtsDbi/EIxALoZTVUHrjNWT6B7GVl07aijbkbtMn4W6bbGYbjG7bILJZKZIks4pRcIXZzZcm52jLveb3o3l9ZFpb0IODGMnkhA2az0UkE2ZYgapN4G6TImm+IkXSBWDoBmee2QdAU+8A2Xzl4fEKSra8cZpXfvockd5QYZqqqSy5upHVN69nwSwEVRfDXVXCug/fQailm47XjtB/vJVY9+CozDhFVbB5XThKvDj8HhwlHpwBL/aAB2eJB7vPjWrRGGwzhaG/tqzgWitbXE3P0Wa0RBi9swUjl6Efg2wyZZb/FwI9ayBUBZfPQXQgTqKtm4ZFAQKVZi2S/s4wJ1/vwOHQqKhwoKoGerif7lNtJBJZUMBTXUZgcTXlKxcSWFg1bLoGQm8eQ0+msfg8+K6aXIFItaQCxeEyrVjpFHrzcbSlqyeVOTcTKKqCs66KeFMbyY7umRdJEVMkWbwe03IXj0DMbHqraBr2qqntT5uCJUmPm+UaNNf5XceKoqBYrYhsFiObnZSwkkimy1CNpCHRr3qG6yEpdgdqXthoJaXowUGyPd3YFy0+/3aFQO/vQe/qLGz33Pu7dLfNf6RIugD6j7aQGoyQyeVoC4XxBryEB8JF+7ft/tWr7Hl0BwAWu5XS2jISkQSxgQindx/n9O7jBGpKWfuWTay47irsrlmqlTOCwKJqAouqySZS9B9vI9zWY9Zg6g0idIN0OE46HCdcbGXFtEzphsDjsuK0qZx5di+azYJPTXLXBzegaqYLSwDG8GooCqg2FS1fIsHlttK41bQ4CcAIVFG6eC2bVgww8PKe/FuYigZU1XgIxnRCPRFiXQPEugbo2HkEq9tB+coGKlYvwlPuI3rMbPNRunXdlCwRitONtnQ1+hmzSa7RfgZ18YqLFqPkXFBdEEklW9bO6LaHqmpb/F6zHpWimi7NdAIc47cgGQ/VYX5+RjqDEGLCc6Tn2zxo7sntR7FaTEEt45Iks0zBkpQX44qmYV+2nExrC/ZlywrLWSoq0IOD6KHQ5LY70EfuzKnC32pZkZeQQgkAGbg9X5EiaZoIIWjL10Nq7gviLQ8Uelida0k6+My+gkBaf8dmtt1zA1a7DYtFJR2KsvNXOzn26mFCXYO88pNn2fHQ8yxcVU9dlQ9HmR9HfTVWmw2L3YLFZjV/7BacHteMpIpbXQ5qNjVSs8mszyMMQSaeJBWMkgrFRv8Eo6TCMYysTjpiWgccNgvZwQhtrxxk1fYGymrN+kjRwQShnhjJWIZsOkc2rYPFiqcqQO3yMnyKgkBBONxmlWyXG620EsVmR+gGfQeOghC4l9RTdt3V9O/YR+JMO+VlTlbccwvR3jCDpzvpP95GNp6ia99JuvadpLrWi8tpQfV5sVaUTvl8KFYb2qJG9FNHEPHIRS0P4KytBEUhG46SjcaxeqcuXoohcjlyEbOJrbUkYN6c3X7TkhQNTk8k2Ue3JlEmKBswZElS3ZNLQjCDt5OyVpJk1hlqbKuOcIXZ6huw1TeMWk7zm3GReiR83pcCAL3fjNVEVdHKq9DKi/RdlMUk5z1SJE2TUEu3WcNIVWjuH2TJ+uVEQ+ZDaKRI6j7dyas/fQ6Abe+9gc2/s33UdqoXV3PLx+5k2z03cmLHEQ49tx8lFmeRC7R4DOIxTu0+yomWQc5Fs2r4KgKU1JRRvayWmhX1VCysQrvAFiiKqmD3urB7Xfgbxl7YQgiy8RTJUJRXHnwMcjpLtq+mpsaG16NiGIIT+87SfryX2vVLqb16JeULyjGcdiwuJ+g5aDtmNlKtqsfiGRs0HjvVTC4SQ3XYC0HM5ddtMgPjB0KE9x6i+q6bqFq3FEM3CLV003e0mejpdlxOC0IIWg930HTwp5QuraNi9SLKVjZgc0/OdaPYnajVC8z+bj0dZjXvixAbo9pt2CvLSPf0k+zoxrpq6YxsNxuKgBD5FOf8OfAETJEUD0N53ZT7wimalrf45DBS47cmEUKgx/LxUBM0zR2JarWiIwtKSmafoRIWin1i673qcpvXiK4j0umxQdgjEEJgxMzngW31OlT3OBXppbtt3iNF0jRpf9W0Iul+N5mcjr/UV2h0m86LpGw6y7PffgIhBMuvXc3V77i26LbSgxGiTR0sWlLJkpXvoOPJV0A3yCoqFkOnvtpPTGiEoylymRy5TJZcJoee1QmeHSB4doAz+04C4LDb8JR5abxxLfVrFlNaW0bra0do2XEYPZNj0XVXsfTWjeO+BWVSGfRMDoHA7nIUFVyKomDzOEnFUiTjaTSrhRU3r0J0mmnkliUryBxLEE92onld1F7dSEmJm2AwTi5nQKjXvCnYHOAOjNm+EILIUdNd5l+/EjWfKahoGhU3b6Pr8efJ9AcJ7j1E6bb1qJpK6dJaAg2VdP13jFw0jnB7sPgMsgMRBk62M3CyvVCBfMG1ayhdVnf+LKuyShjohUwKMdiLUjG9QnJTxbmginRPP6nOHnwzJZKGerKVjGhc6/Kab7J6zuyb5zp/a5FzUe129GxuwtYkejRmdkHXNDTP5PpfDddKku42yewyXCPpPPW7VNWsoZRIYCTiEy4vUknzulJUFOf4LwYyJmn+I0XSNIj3BvMPXYg7zJu52+fGGzfTPEN9IQD2P7GLcE8Qd4mHmz58u/lwMgyUVBTScUQuzWB7Fi2XI+DTyUS6ifdFsbtsaH4/dW+7nt6X9xM+3szmbctY8PYbC2MwdIPoQIRIb5D+tl7Onuyg+3g7miFIDkTZ9V8v8bryElUlHmwjstROPL2beDhG+epFRPvDRPrCRHpDhHuDhHtCJKOju1/b3Q4C1aWU1pVRWldOaV05ZQsqcAU8DLR0AVC1vAbR1Qbk6xl5AwTqys1z0TkwanvkssNp/6U1Ra0XyY5ucpEYitWKZ9nCUfMsXjdlN2ym77nXiB5rwuJ24V2zDAxB/8t7yEXjaG4n9b9zC4tsVhK9IfqOtdB3tJVY10ChAnlgcQ2Nd1+Lu3L80geKoqJW1GB0NmP0d5sVvtWZTcsvhrO2itC+I6S6+2YsBT7dY5r+bZXlwxMVxbQmRQZMi9J0RJLDjh6Lo4+TrACQ6TGD+62lky+EKluTSC4WQ+UpJpPJqrrceZGUgNLxM2ZF3oqkeDwT3zNkTNK8R4qkadC+4zAA5SsX0tllPnzcPjcOt4ODOw+x5/m9bLpxA288tRuA6z/4FuxOG0q0DyUeQhGj3xo0i4Zm0bC5bHiqvFRdBYZmg3SU0o2NhI83E2/vIRtLYPWYMR2qpuKvDOCvDFB/1WI2vm0bT/3zz+g5ZWZSVNaUYstkUVUFwxAE4ylURaHE46B95xFee3wXuiHOe6zpeIqeprP0NJ0dNd3hdeL3mGmwy1eXmBVjHS7UyloA/AWRNLqtCoNdZiC23TXuQ3ko6NrbuAi1SDFKV30N/o2rCB84RnDvIRJtZ9FTaVNYaSrlN25BzTerdVeV4K4qYdHNG0kMROh8/Shn9x4n1NzF3m88RuM7thdisYqhBMqgpwNyWUR4EKWkfNxlZwprqb9QCiDVO4Cz5sLioUQuR6bPdNfaq88JHi2IpDCUG8Pm/0lyvlpJRiZL6kyLue+62klvV5GtSSQXAZHLQc60Vk4mi7JQaDIRn3A5I26KpHHdbIUNSkvSfEeKpCmSjsTpfvM0AA3Xr+W17/43AG6vi1VbVvH8L1/gbPNZfvvtX5PL5KhZXseytQtQ+5tRdPNiFJoV4fAyeLSN0Ml2LB4ndXduRxVZlHQcJZNE1TMQ7sGhqNRsXkzvm21ETrVRtnFl0XHl0ln6ms0y+m67BUcuB6qCq9yPfUEFSk+QWH+ETDqDTVWoKPdhqQjgLfObYquqxPypDGB12EBAOpEiHowxeLaf4NkBBjv7GezoI9QdJBVN4jJgyapKSksd5LI6j/7kVQL1p1m8cRkL1iwCIBWOk44locSNSMbMIGGA8tqiVqRMKELqrJkRd/J0D7E327HarfirSqi/ahGltaZI8a9biaJqhA4cJd1rWqtUu43yGzbjqCouZFxlPpa/7RoWXLuGk4/vZPBUB8d/9QqJgQhLbru6qJVDUVXUsiqMng6MgR7UiyCSFGW4FECqs/eCRVKmfxAMA9XpQPOe4+5yuMFiNS18iYgpmqaAdp7WJKnWVkQ2i+b1YJuOSJKWJMksMpTZhsUyqXYjwyIpWXS+kYhjxCIYUTOTVHVP7F4uWIl1fVLB4JKLjxRJU6R95xGEbuBvqMLfUEU8755y+934Snxcc8c2dv73DnqOd6AocNdHtqMFTeuO0CwY3kpweAgePk3vgSZQFOruurHwxiE8pQhDR0mEURIhFD1LyQIf/upVRLojpp+7SCXo3qazGDkdl92CK+8CXHrLRhrv3Iw6wl3Td6Kd3d95Ao/dylv+5L1YxqsMroDD48ThcVJWP9r6kMtk6TzcwpsPP8/aa80MkDf2dTDQHWagO0zTnhNYHTbKvS70dJZgex9VC8rQezrMDXhLx2RTCSHoPN7GwI79BCzQ0xdj7+FTnEvV0lo2/852Fm1Yin9tI65FdaQ6ukHTcC2sRbOfv6aRs8TLug/dQcuLB2h54QBtL78JhsGSO7YUblJCCJqOnsFf6qe8ogJ6OyEZRyRiKK7JxdVcCI7aSrMUQGcPJZuvuqBtZXpNa569qmLsTXjI5RbqM9uUTFEknc+SlOkyhbtjyeIpPQCGLIiyBIBkNimW2TYRSr7QpJFMjJkn9ByZowfNe/TQ8p7zWJJG3ssNw+wTJ5lXSJE0BbKJNGf3HAOg4cZ1AMQjptnV5XVz4IX96Kks5S4PmkXlPZ++GY81iwCEqwThLUcoCgN7jjCw7ygAC2+5GldNuRnQPISqmWLJXWLGL0X6US0QWOBH9DYhXH6EuxQsw4Kg+0QHVk0tCKQ0Civftm3MMZQvX4Cr1EdiMEL3wTMs2LxiyufBYrOS6A+x8cZF2OwWcLrY+vH3suS2HpoPnObUrmOEe4LEFQWH1cIL33kKERukwmfWO6J0uKx/pD/MydeOcvyVQ8QHwty2fTGgMpCGtW/ZhKvEQzaZoa+1m85jbfQ0neWJf/0FizYs44YP34av3D+tDDBFVVh86yasLgennniNtlcPYfU4abhuLUII/uMfvseel/ahaSqf/fv7WFVViggNYAz2ol0EkeSsNa1H2WAYPZFCc02/oGImb2kbFY80Ek+JKZIS44vw8ZhIJAldN4O2AWv51BoHyya3kotBIR5pkgVLVZcZYiBSKYRhjIo3MoKDowWS04XqOE9l7pHubT0nRdI8RIqkKdDx+lH0TA53VSlljfUAxKOmSBo8289/f+MxbJpGdamfd3zkGmoW+BAoGIEacJpvFP27DjJ44DgA5VevYsF16wiFxr6VAKAoCKcPHF56Xn0db4kNV5kbJRFGJMIIhxfhCiCsDtoOnMLjtKIAyUyOWDJLLpvDck5Mj6Iq1G9dyYmnd9O++/i0RJIwDIy+HmrWVSIEWOqWoGgqlYtrqFxcw9Z3X0/nsTb2//wl0v0RFD2L354FLOx9tZnuvhOAINwTIjSiyveyxWVYNBXF7eKuL757jOUhHorxxtN7OPjbvbS8cZquk+285VN3s3jjMqbLgmtWY+g6TU/vpuk3u3GW+jjT1cuel8xK6rpu8OOv/Cdf+sZfQGgAERpAVDdMqxP4VNCcDmxlATIDIZJne8YEsE8WI5slGwwBYBuvNYvNYf5kUhAdhMDk3XtD5QT05Fj3Qy5ilh1Q7LYpV82W7jbJxaBgSZrk91Ox2kwho+sYyeSo4qhGzHSxYbWhuj1Y6urPvz1FAYsFcjlELodim/0iwpKpMfupOpcJuXSWjteOALDwxnUoioKe00nFzYvs0CsHAaitKuF9n7mR2sVlZHMGGV81nR1hooMR0gOhgkCquvFqqravn5wLQlGwVlbT8sppOg6cRVdsKICaiqINtsPZk6zdUkfDqmrcpW4ywtxmrD9SdHMLNq8ARWGwuYvYiBYpk6Xv4HGWX2W64JSqBQUT9PBwFRasXsjm99wAwPVvX4PNbqGrPcjrzx6j9c0mWt88YwokBepWNXDrx9/KmqvMqtsl6xqLnhd3wMN177+F33vgY1QuqSGdSPPkV37J64+8UijkOR3qt19F7ZaVIODoz1/kpZ+bda3e9vt34vV7GOwd5I0Dp8HhAiEQwb5p72sqOPLWpOTZ3mlvI9NnWpE0jxttvH5TigL+vJUpPGAG1k8SS744pB5LjPkMckGzVrvF759yrMWwSJLuNsnsYUxVJI3o7WYkRr/cDtVFsi5cjG3FGlSPb3LbHLLc6jLDbT4iLUmTpHP3MXLJNM5SLxVrzL49iXw8kqIotBxtZdHCCn7/D2/C43MSGozx/IunaTv4JPGwaW26ZtNiarx27LWVBNZMzUXkWVyHYtGItPYRae3D4XdSsqQc/4ISLJpC4+bh6rDpZJZgbxRbagAlBmgWhGY13SiqBYffTeWqBnqPttK++xir7i5ev6kYejiInwiqqhKOC0orx68dFKgrZ8HycqobAqAolG3YwNv/tJ54KIqiqrgDHgIlbuJnOkm0tKKLHELAwLE2DMWCb9mCoumzpbXlvOeLH2Tnwy9w8Jl97H1sJ7HBKDd/9M5pFdJUFIXlb7+WZDBK8HQnq71++nwe7vzdOwB48qHf8Ppze9j0P96D0dmCMdiLUl4960GWzrpqIodOkursGWPanyzndbUN4QnAwFnIZSARBffkbvBaXiSJXA6RyYwqyJcL50VSwD/lcQ/HJElLkmT2mKq7DUyXmxGLmo1r8wjDQOQz3pTzZbSdS97FJnT5QjAfkSJpEmTiSVpfegOAhTeZPckAYkPxSE4HS5ZW8sFP3YzdYaX3bIjvfO23iLQAAXannWw6Q6nDvBhe+M0+FgRT3HHvHZMeg2azUr7lKvpee9McU0qn60A7Z9/ooD+To35pBeULS/GWubE7rVQvLAUMiI62eggA1cLG25bSt8hNJpVERAfyZmQrqBazwGARASDiUfSWU2iaSnd7mKpbbpxQKDh9DjbekneFuUpwlZeyKBAAINUfomfXIVqfNesreXx2sKikU1nSZzqJnOnEUR6g7i1bcNeNdf9oFo0bPnQbpXXlvPTD33L8lUMkwnHu/KN3YnNMvSGtqqms+d1beOaBH+K227h9wxocdhtbbrqaJx/6DUf2HSNjd2NRNcikEbEIinfqD/+pYK8sRbXbMNIZUt19OGuLtDU4D0NB2+O62oZQNfCWQbgPQj1meYZJiEBF01CdDoxkilwsgW2kSAoNiaTAlMc9XAIgJ7N+JLPGkNA5b+zQCNQiwdsiETctsBbLpOotjUSxWMz7ck6KpPmIFEmToOX5A+jpLJ6aMqo3DHeUT+TjkTZtXcp7fm8bmkWjq22QF3++lzVV5cRSGYwSP/d84QOET7YyuOMAGV3QMxin5+nd9LZ08/G/vxcUDWGI8/ZhK1nfiL08gMjmcC+s4dQPH4dUmuxAgsPtp7nq3TfgXr2cI0/vYqCpneVbl1HbWGOWHjCyoOdQAIwcdgssWJl/6MZG1zISKKbVSbMiNFM0CV1H9PdgcVgY6IlCZS1WuwWEAShjH6hCoPR14HBZCQ/EyaW8VNYJ4mf76Nt7jMjp9sKizuoStEyKnCF4sbULDworykqgP0TTfz1D5TVrqbrmqqKWlDW3bMAV8PDbrz9G28EzPPZPD3P3n92D0zu5HmEj6Trby7OHjnHnmpXYgBOP72DFO6+nsraC3rN9HNp7nE3LyxEDPYjBHphlkaSoKq6FtcROtpBo6ZyySDLSGXJh0+Vqq5hE6YJABUT6IZWYUgVuze3CSKbMJrZlZnFOI5vFyDe1nY4laUgkgelyU8bLwpRIponZQNm0VA6l9k+GYmUAhlxtqts7dUGfd7dJS9L8RIqk8xBq7aZzjxlHtOyubaOETDwS567fuZq73nE1AKcPdtK+u5WFpaarosLvQnPYSHYPkG43q1NXb1nNe6/dwK8ffJT242088IF/wO60k4gm8JX5ueF9N3NVPubpXBRFwb3AfFDmsjl6eiJU+u14PTaE3UH91pVmM0WXmzOHzpJVndRsu5pCpIgQYOTMLAo9x8CxZqJdvXjLvVQsqQIjh2LoKAjQs6BnGTkKLV88stqXD1bsMetFCXNwZld5FFAA3TD35bDh9IOixkgffxOrblC73EfNstUkU1nauvrxOuzYhJPXDzVxpKmFgYEIz2kW3nLVctbW19K76xCRlrMsfseNWIuIn8Ubl/HOL/w+v/6/P6f3TBePfOmnvONzv4uvfGoP59/87FmiqTR9Lgt1WYXu/adwlQfYdMNGnv6v37Lv5f1s3vYh9IEeRCSEyKRnPdDStWhBQSSVbF2HOoWA8aF4JIvPi+aYxDgtVvCVmRXRB7vA6ZmUNcni9ZDtHyQXiRWm5fLB4qrLOW5Pt4lQVBXFoiFyOiKTBimSJDPMUEyRYrdPKRFjOCYpXrByDhWPPG/KfxFkksL8RoqkCcilMhz7xUsgBNUbllGyeET8jWFQX6KwMS+Q9r98iv4j3XgcVpKZHG19YWpK3PiAEw8/g99vmmD9KxdR4ffykS99gsf+7Zf0tvaQyJoXa6Q/zBPfeIxg9yA3/t4tE47t2HMH6O+NUOmvwO2yUXf9ZtR8PI4nLw5i/eHRKymK6VLTzIvSt2oFex/dSy6ZYe37biLcHaLrcDOK0PGWuSldUErV4gq8Dh1VVchmdVIpHV9lAAWjUDlcAVOAiXMCD/OWH6evuPnZBZTVDAuZu9fUcvf7b0AIQSpj0N0TpL+jn0q7Ez2Rpe3x56i+biPuBdXmtpVhy1L10lq2f/x2Xvz2k4S6Bvnen/876hIf7/34eygrL8XusI8SnkII9u9+kwN73wQhWNjQwO4X9gBww/tvR+2LcPqp1znz2z2suHY1TwMHXz9MSgeb24uIRzEG+9CqF0z4OV0ojuoKLB4XuViCRHMHnuWLJr3upF1tIwlUmhlu6aQplgIV513FEjBfCoYCtQFyg/lecaWlk9/3OahOF3o0ih5PTLrnm0QyWfS8pVN1Ta7p8hCqx3x5EJmMmR3ncGCEQ/l5k4vlG0nhRStTvNaYZG6ZMZHU3NzMAw88wL59+3A6nbz97W/nc5/7HI5JBMT96le/4lvf+hadnZ0sXLiQP/qjP+Kuu+6aqaFNCyOnc+TnL5AKxXAEPCx/+4jg5kwCNdRNecCGnjN4/ldvkDwbptznJGcIxNIFnD7UzKmuft5y/VoCmGJCWCwk+iMomoXSmjI++S+fJhdPEByIYbHbOPjiG7z6i5fY+atX8JX52HDb1UXHlowkOPLUbtwWlWxWx2rV8HiHLQXeClN4RPvDE8ZzWJ12lt68gRNP7ebQL18mmcgWrE6h7jB9zX1UlWgYPjvBgQT7X+tk+yffgR5wk40lyERiJDr7iHf0kBkMoWoqVreN+o11WOwWov1xDu06jcvqIJczOHi2k55IFF0IrFaN9asWcc3KhVgdVhy15VjsGoqeQ1HAaddY3FDO4oZz3URx6DXblggUUDWyOZ22ti4GOnpYsr0Sv+LGyAhi0SS//veHCYZjqFYrN959E1vfspVjh0/xrX/7HkcOmjWvVEWl1leFTbOy+aarWbi8AZZDJpqg7dVD9O06yuYVS9l7ook3XjvIti3LEfEoYrAXUVE9nJ0yCyiqgmfFEkL7DhM5chr30oXndcuCKQLT3fl+bVXnFzoFLFYoq4W+DhjsNq1J9onjNawlAQCywVDh+5bpMwWapXT83njnQ3PnRVJinBIZEskFYERMUa95p2b9UTQN1evDiITRQ0Fz/WwGVA3VNw0XfN7SKjLj9z+UzB0zcnePRCLce++91NbW8tWvfpXBwUH+8R//kVAoxL/8y79MuO7TTz/NF77wBT71qU9x3XXX8eyzz/Knf/qneL1err/++pkY3pTRszmO/fJlBk92oFo1Vv/uLVgcNjOmJzZgVsIGYpEUT/10N0YkRX2lD0MIKm9Yj3dhNS88+gqKovLCziO854bVACTCCU7817PmThQFq9uB0+dGddqxuBzUB1zceNtG3thxhN9+/ykqGiqpaxyutSEMQbC1m/0/exGPVTUfRoqGFYg2teNdYlo1PKVeUMyyBaloEqevuL9dCMGCTctpem4/Qtdxu20svv4qSuor0JMp/FoMu0MjFc/Q1RRm4YISWn/xDLlEquj2EprBmqtrsVg12tv6+F//+DMSyTS3N67B53DSEhygOxGhv3+A2hI/71zdSLi5n1ePNfFfr+zNnxaF0hIvNdWlVFeVUFtTxqJFNVSW+ynzuXG57Gg2DUVRTLegkcOmwrJF1SxbVF10XKPobWJlQOfvP/e7JBJpBCrRcIJEPEU8kULXIDvYg9XlYskta8HQadt5lMZAAGVRA7ueeZ1r3rKlUFfI6O5Aq1s0qe/VdPE0LiJy6ATZUIR4U+ukrEl6LI4eT4Cqnj+z7Vy8pWb17WQMupuhbrkpns7ByGZJHD9JbjCIZtPQM2YMlMhm0MNhUBRsVdNvqVKI/YhLkSSZefS8SJqOsLGUlpKJhMl2d5nXCaCWlE4rA1Wxmi+4QlqS5iUzIpIefvhhIpEIjz76KKV587qmaXzuc5/jM5/5DEuXjp/u/m//9m+89a1v5c///M8BuOaaa2hubuarX/3qnIik6Nl+jj3yCvGeQRRN5arffwv+ah9KuMdsFZK3tZw+1sOzD+/BZdVYWhsAIO5ycu1NGwFYsKKejhPtNFQGcNgspLM5QqiUBpykQzEQgmwsSTY2ugifBly9vIZsTmff95/AuOcWrHYbvcfbOPvGafS06bdWFAV/fSXL37Wds79+mVjLWXKJFBaXA81qwV3iJT4YZbC5i0C5l3QoRiYUJROKFn7X0+abS03ZsKUgc7KZ0NlO6tfXYnNYyaZytO/vxEjlGCmNdCEIJRJ0BcOc7OqlalE5H37/zXg8Drq6g/zzg49TUV/Ftbdupcqw07HrBG+9cTvXfvJtRE62EHz9DRRD0B1P8JuDJwrbFUIwMBhhYDDC4aMto86NqqhsWtTA29avxum0Y2gKh7u7aA4OUFZVxrbtGygt9ZOOJ4j0DVLq8+DzubA7rNicVuwOK6qqYLNZKbVZKRg56s5xR6VD5g/QuKGUJWuuI9wVYvlggv6eMM2v7mfRuqUYbacQg70YTjdUTj3zbLJodhv+dSsJ7j3E4O6D2CtKsQYmNusnW80WMLaKsinFMQGmW7ZqIXSehmwaOk5B9UIYEW8hdJ3onn0Ft5qqKSiqRmTX7kKWjn1BHap9+jFbmsd0g+Si0WlvQyIphpFOFRILNP/URZK1ppZMawt6OISayYt4q51ccBAtUDKl4O2h8gMilZx2qQ/J7KGIC6nCl+dDH/oQXq+Xb3zjG4VpmUyGq6++mj/90z/l4x//eNH12tvbue2223jwwQe5/fbbC9N/9atf8Vd/9Vfs3LmzILqmiq4bDA5O3KkZwNANkgNhwm099B1tIdbZh8Njw18ToGHrchwOUPThgLrB/gQvPXqAzqZ+KgJO6iq8qIpCdyTJW77wITwBM3aio6mDH/7Nt3jbtpW47FbebOrmcHMvd977VirqynFaLCTae+l+8zTZRBpVUVBU0FQVq0VFHeFSyeUM0lmdTFY3C1RmdcpX1HPDH95NLpmm89cvkwlGsFeUYC0rIRuJE2zuglwWbbIXnKZid1nx13gpqw+gqArpeIamN7qJZ3SCySTH2to52dxGKJEkZwhqq0rZuHYJt1x/FYsXmhaDts5BBi1+1l+7sXCjiPUGefbLD+H32lm6dgEiZn4ujtpKKm7ehmK1kE6lyWVzoCioqoqmqaiqSigYpr25g+bTrZw52cKxQyewJHO88+p11OczqTK5HMfO9tLU009fJE46o5vFPg0dh9XK0tIqHBYbKKBaFDKqjm4RqFYVX5mXleuWseHaq0jG47z6/KsEvC4WLayhfkEVVm38m52eNUDoiJwBTjf+BQuIGxZ0oYyKl5oJhGHQ85tXSPcMoNptlGxdh6uhtlBPaNS4kkn6f/MSIpvFf80mnPV109tpNg1dzeb/gOLx462tIZZRCO07SLa3D8ViwbVqBckzLYWHDoCttgbP+rXDDTyngR6LEXrxFVBVSm6/FdU6+8HbFotKSYmbYDA+ulXQZcSVcIww8XGmm8+QaWlG8/txbdo8re2nzjRhdHegaiqGbqCnzZcD1e3BtmgxlooivRKLIIQgvW8X6Dlsq9ejen1UVEw9AFwyO8yISLr22mt573vfy+c+97lR09/+9rezYcMGvvSlLxVd76WXXuJTn/oUTz755Chr08GDB3nf+97HT3/6UzZvnt4XWAiBYZxzaEYOBAjdAM6ZpygTfKEF2axOLp0DQ5jLAkOpX7ousLkdKIaRD2AGgTAbFgKGEOR0gciPR1FAGZk3pipYnXYsNgvCEOjZHEYmO6Ly8blNScdMKSQhicI/Q+dhaIJpAzNjRsBis5jjMP8x5444fj2nk0npIAQ2pxVFHX3M5t8jAqERGLowzw+MLtosjNFjwownsnmcE2ZPhUMRclmzTo4QAj3fKds8ZSp2qxW7RRsjBM3lzTENjWNoNyM/h+FTJUZ/G4bWBXRhYLFoWK0aVqsFLS/gzn/zO2fHYz6x6SGGvmMjKXyG5rGPPOhpvZXmz3dh84V/xsP8Qgpj9L6BC34rFsbQtTrBsSiY9b1mAEUBVVUxDGMqhccvKa6EY4TixymyWfM7lb83KzbblIW80HNmdez8vR7y31BFQZxzrytcm4piZrGNc98Q2ay5TQWwWLBMIyNUMjvMWEySzzfW/O/z+QiHw0XWMBmad+66/rz5c6J1z4eiKGjnWgG06X/xNDtwkRJsrHYrMPniZrOBBbDP8ctMaVlgbgcguWJRrwCXx5VwjHDOcWozULLjAp4j429T9mybr8zqVTLZSrnnLjP0Fiur7EokEolEIpkrZkQk+Xw+IpGxzVSj0WhRC9MQ41mMhrY10boSiUQikUgks8mMiKSlS5fS1NQ0alomk6GtrW3CzLYlS5YAcObMmVHTm5qaUBSlMF8ikUgkEonkYjMjIunGG29k165dBIPBwrRnnnmGTCbDTTfdNO569fX1LFmyhCeffHLU9F//+tesW7du2pltEolEIpFIJBfKjIik97///Xi9Xu677z5eeeUVHn30Uf7+7/+ed7zjHaMsSX/913/N6tWrR637x3/8xzz11FP867/+K6+//jr/8A//wI4dO/jjP/7jmRiaRCKRSCQSybSYkew2n8/HD3/4Qx544AHuv/9+HA4Hd99995iSAIZhoOuj+3vdddddpFIpvvnNb/Ld736XhQsX8q//+q9zVm1bIpFIJBKJBGaoTpJEIpFIJBLJ5caVUShDIpFIJBKJZIpIkSSRSCQSiURSBCmSJBKJRCKRSIogRZJEIpFIJBJJEaRIkkgkEolEIimCFEkSiUQikUgkRZAiSSKRSCQSiaQIM1JMcj6i6waDg/G5HsaEqKpCaambwcE4hnH5lqu6Eo5THuPlgTzGy4dL+TgrKrzTXlcIMS+Peb59HpM9x9KSNIeoqoKiKKiqMtdDmVWuhOOUx3h5II/x8uFKOc5zma/HfKl+HlIkSSQSiUQikRRBiiSJRCKRSCSSIkiRJJFIJBKJRFIEKZIkEolEIpFIiiBFkkQikUgkEkkRLtsSABKJRCKZGwzDQNdzczwGhVRKI5NJo+tzn3IOoGkWVFXaJi4lpEiSSCQSyYwghCASGSSZjM31UADo71cxDGOuhzEKp9ODz1eKolxaqfBXKlIkSSQSiWRGGBJIHk8JNpt9zoWApinzxookhCCTSROLBQHw+8vmeESSySBFkkQikUguGMPQCwLJ4/HN9XAAsFhUcrn5Y0my2ewAxGJBvN6SWXG9Gbo+49 |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
adding descriptive stats here may help defend why intersection_union_mapper yielded best results - can talk through the clusters and their intuitive meanings
}, | ||
{ | ||
"data": { | ||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAKmCAYAAABZkgpjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9Z3gc532vfc/M9o7eCLCDTaxikaguq1i2HDc5cdzkEju2YuWkOLET57wnOZET5yTnxLEVt7iXSHGRpcgqtnohRbFK7A1EJzq295153g+zWADEAgRAgADJ574ukMDUZ2Z3Zn7zr4oQQiCRSCQSiUQiGYU61wOQSCQSiUQimY9IkSSRSCQSiURSBCmSJBKJRCKRSIogRZJEIpFIJBJJEaRIkkgkEolEIimCFEkSiUQikUgkRZAiSSKRSCQSiaQIUiRJJBKJRCKRFEGKJIlEIpFIJJIiSJEkkVwhfOELX2DFihV0dHTMyf4feeQRVqxYwSOPPDIn+5dIJJKpIkWSRDILrFixghUrVrBq1So6OzvHXe5tb3tbYdmdO3de0D6/9rWvsWLFCl5//fUL2o5k6nz4wx9mxYoVcz2MosznsUkk8x0pkiSSWcJisWAYxriWk3379tHU1ITFYrnII5NIJBLJZJAiSSKZJcrKylizZg2PPPIIhmGMmf+LX/wCq9XK9u3b52B0EolEIjkf8hVWIplF7rnnHv7u7/6OHTt2cMMNNxSmx2Ixnn76aW699VZcLte463d3d/Ptb3+bl156iZ6eHtxuNxs3buS+++5j3bp1heVuvfXWglvvIx/5yKhtnDhxYsx2H374YX7605/S0tKC1+vl1ltv5S//8i/x+Xxjlj106BDf+ta32LdvH9FolIqKCm688Ubuu+8+qqqqxizf2trK//2//5fXXnuNbDbLypUr+cM//MPzn6wpEgqF+P73v89zzz1He3s7FouFurq6wthGntfm5ma+/vWv89prrxEKhQgEAlx77bXcd999LF68eNR2v/a1r/Hggw/yox/9iGAwyHe+8x1OnTqF3W5n+/btfOELX6C6uhqAjo4O3vKWtxTWHenW2rp1Kz/+8Y8B8/MBeOyxx/i3f/s3nnvuOXp7e/n0pz/N/fffT09PDz//+c959dVXaW9vJxwOEwgE2Lp1K5/5zGdYvnz5mON/5pln+NGPfsSZM2cIh8P4/X4aGhq4++67+eAHPzjpsUkkkvGRIkkimUXe8Y538H/+z//h5z//+SiR9Pjjj5NIJLjnnnt48skni6575MgRPv7xjxMOh7n++uu54447CAaDPPvss3zgAx/g3//937npppsAUxg999xz7N69m3e/+93U1dWNO6Z//ud/5tVXX+WWW27huuuu4/XXX+fnP/85LS0t/OQnPxm17LPPPsuf/MmfAHDnnXdSW1vL4cOHefjhh3nuued46KGHqK+vLyzf0tLC7/3e7xEKhbjxxhtZtWoVra2t/NEf/RE33nhj0fE88sgj/NVf/RXvfve7+fKXvzyp89re3s69995LZ2cna9as4fd///cxDIPm5mZ+8IMf8P73v78gkt58800+9rGPkUgkeMtb3sLSpUtpamri8ccf57nnnuP73/8+69evH7OP//zP/+T555/n1ltvZcuWLRw8eJCnnnqKY8eO8fjjj2Oz2fD5fHz2s5/lV7/6FZ2dnXz2s58trH/uZ5DJZLj33nsLn6fL5Soss3fvXv7jP/6Dbdu2cccdd+B0OmltbeU3v/kNzz//PA899BCrVq0aNba/+7u/o6KigltvvZWSkhIGBgY4ceIEjzzyCB/84AenNDaJRDIOQiKRzDiNjY3ihhtuEEII8Zd/+ZdizZo1YmBgoDD/3e9+t7j55puFruvi85//vGhsbBQ7duwozM9ms+K2224Ta9euFXv27Bm17e7ubnH99deL7du3i1QqVZj+1a9+VTQ2Nopdu3YVHdPQfm6++WbR2dk5al8f+MAHRGNjo3jjjTcK02OxmNi6datYtWqV2Ldv36htffOb3xSNjY3iox/96KjpH/vYx0RjY6P4wQ9+MGr6M888IxobG0VjY6P45S9/OWreL3/5S9HY2Cg+//nPFx13MX7v935PNDY2im9+85tj5g0MDBTOi67r4s477xSNjY3iiSeeGLXc448/LhobG8Udd9whdF0vTB86jxs3bhTHjx8ftc6f/dmfFd3Whz70IdHY2DjueG+55RbR2Ngo7r33XhGPx8fM7+/vF9FodMz0w4cPi/Xr14uPf/zjo6a/613vEmvWrBH9/f1Fj38qY5NIJOMjY5Ikklnmfe97H9lslsceewyAY8eOceTIEd7znvegqsUvwRdffJG2tjY+9KEPsXnz5lHzqqqq+IM/+AP6+/t57bXXpjye++67j9ra2sLfFouF97znPYDpWhvi2WefJRQK8ba3vY1NmzaN2sbHP/5x6urq2LlzZ8HN193dzY4dO1iwYAEf+tCHRi1/2223sXXr1qLjuf3223nyySf5sz/7s0mN//Dhwxw4cIBVq1bxyU9+csz80tJS7HY7APv376e5uZlNmzbxtre9bdRyd999Nxs3bqSlpYV9+/aN2c5HPvKRMVlh73vf+4DR52kqfP7zny/qXi0rK8Pj8YyZvmbNGq655hp2795NNpstTFcUBYvFUjTov7S0dFpjk0gkY5HuNolkltm8eTOLFy/mF7/4BR/72Mf42c9+hqqqvPe97x13nTfeeAOAzs5Ovva1r42Z39LSAsCZM2e4+eabpzSetWvXjplWU1MDQDgcLkw7duwYANu2bRuzvNVqZcuWLXR2dnLs2DHq6uo4evQoAFdffTWapo1ZZ+vWrezevXvMdK/Xi9frnfT433zzTQCuv/76cUXmZI4BYPv27Rw4cIAjR46wZcuWUfOuuuqqMcsXO0+TxWazsXLlynHnv/jiizz88MMcPnyYYDBILpcbNT8YDFJZWQmYbtwvf/nLvP3tb+ftb387W7ZsYdOmTVIgSSQzjBRJEslF4J577uGf//mfee211/j1r3/N9u3bR1lzziUUCgHw9NNPT7jdRCIx5bEUs1gMiZqRWXjRaBSAioqKotsZmj603ND/ZWVlRZcvLy+f8liLEYlEAIoGjZ/LZI8hFouNmVdMuBU7T5OlvLwcRVGKzvvRj37El770Jfx+P9u3b6empgan04miKDz77LMcP36cTCZTWP5jH/sYJSUl/Od//ic/+tGP+MEPfoCiKGzbto2//Mu/ZM2aNVMen0QiGYsUSRLJReDd7343X/nKV/jCF75AJBLhnnvumXD5oQf017/+9VEZSheToTH09fUVnT80fWi5of8HBgaKLt/f3z8j4xrKwOvp6TnvspM9hmLCcaYZTyDlcjm+9rWvUVFRwSOPPFKwFg0xZFU8l3e96128613vIhKJcODAAZ555hl++ctf8vGPf5ynnnpKWpUkkhlAxiRJJBeBsrIybr75Zrq7uykpKTmv8BnKttq7d++k9zHkepqOlaMYQ9lUxVxkuVyuEMezevXqUf/v27cPXdfHrFNsO9Nh6Nzs3LkTIcSEy050DCOnX6jlZejcFzvu8xEMBolEImzcuHGMQIrH4xw5cmTC9X0+HzfddBMPPPAA7373uwmFQqO+NxcyNonkSueytSTpusHgYHyuhzEhqqpQWupmcDCOYUx8s7+UuRKOs9gxGoagry9aWOaTn/wst9xyJ+Xl5YTDaSANQCplBuSGQonC8uvXb6OubgE//elPWbVqHddee/2YfR4+fJBlyxpxOBwAWCxOAE6ebGbZsrHxNEP7GRyMY7dHR80LhUy3XTyeLoxhw4Zr8Pn8PPHEE7ztbe9m3bp1hWP8yU9+RHt7O5s3b8Vq9dLXF0XT3GzZso09e17nm9/8Lr/7u79f2P4rr7xYECTRaGrUeYnFYgwM9ON2eyblkquqWsjates4dOggX/3q1/nAB0bXhQqHQzgcTux2Ow0NjTQ0LGTfvn387Ge/4pZbbiss98ILz7Jnzx7q6xtoaGikry+KqioF4TXy8xhi6J6SSmVHzXM6TUvUkSOnqakZ60bVdVO4nrs9AMOw4XA4ePPNg7S29hQCu3O5HP/8z/9AMBgs7Hvoc9u1ayebN28dE7jd1dWbH59e2Ne5Y7sSrke4tO87FRWTj9GTzC6XrUi6FFBVBUVRUFXlkruIp8KVcJyTOcba2jpqaydXn8ZisfClL/0zf/7nn+Uv/uJPWLt2HcuWrcDhcNDb282xY0c5e7aTxx57uiCSNm3ajKqqfOtbD9LUdLrgavroR/9gWsfkcrn4q7/6n/zP//kF7r//U9x6620sWtTAG2+8yeuv76KsrIy/+Iu/HrXOn/3Z5/n0pz/GV7/6f9mzZxfLljXS0dHOyy+/wHXX3cCOHa+M2c/LL7/AP/zD33HXXXfzxS/+7aTG9j//599z//1/yNe//lWef/5ZNmzYhBCCjo429ux5nZ/+9BfU1NSiKApf/OLf8ad/+kf8r//11zzzzG9YuHARbW0tvPLKS7hcbv7mb/53wdoy9DlOlauv3sILLzzLF7/4F2zbth273U51dQ1vfevbz7uuqqrcc8/7+clPfsC9976f66+/iWw2y4EDe4lEImzatJn9+0dbFP/2b/8am83OunXrqa6uRQjBwYMHOHbsKI2NK9m8eThQ/dyxOZ1Oli5dyE033X7ZXo9wZdx3JLOPFEkSyTxl2bLl/OAHD/Hwwz9l585XePLJ/0ZVVcrKymlsXMEnPvGH+P2BwvKLFi3mi1/8Wx566Cf86le/IJMxLVXTFUkAN9xwM9/4xnf50Y++z+uvv8bzzz9LaWkZ73rXe/noR/+A8vLRAdH19Q1861s/4Jvf/Bp79+7mwIF9LF26nH/8x/9LKBQsKpKGyA4MYmSyqDbrecdVW1vH9773E3760x/xyisv8sgjP8Nms1FdXcvv/d4HKSkZjsdZs+YqvvOdH/LDH36XvXt3s2PHywQCAW677U4++tFP0NCwaJpnZ5h3vONd9PR08+yzv+U///NH6LrOhg2bJiWSAP7gDz5NIBDg179+jMceewSPx8OWLVv55Cfv47vf/daY5T/96c/y+uu7OHHiBK+9tgObzU51dTWf+cz9vPvd92C1Dp/DYmPbunUrN910+wUft0RyuaOI8zn1L1EuBXebxaJSUuImGIyTy81MHMl85Eo4TnmM08dIpwk+8zwArpWNOJctnbFtTxX5OV4+XMrHKd1t8wcZuC2RSOaUXDgy/HtkbMyORCKRzBVSJEkkkjlFH1GjSC9Sr0gikUjmCimSJBLJnGKk08O/T6M4pkQikcwWUiRJJJI5RYyoJC1yOkLW85Fc5gghMOKx89b5ksw9UiRJJJI5xUhnzvk7Pc6SEsnlgX62nczhA+Q6Wud6KJLzMGMiqbm5mU984hNs2LCBa6+9lgceeIBUKnXe9Z588knuv/9+brjhBlasWMF3v/vdmRqSRCK5BBgrkjLjLCmRXB4MiSP9bPscj0RyPmZEJEUiEe69917i8Thf/epX+fznP8/jjz/O3/zN35x33aeffpr29nZuueWWmRiKRCK5xBjpbgMQ0pIkuYyRLrZLixkpJvnwww8TiUR49NFHC00VNU3jc5/7HJ/5zGdYunT8uidf+cpXCtVu/+u//msmhiORSC4RhBAF95rmcaPH4tKSJLmsEank6L8NHUXV5mg0kvMxI5akl19+mWuvvXZU1+k777wTm83GSy+9NPEAVBkWJZFcseg65Bvyavk2KkZGWpIkly/niiSy2bkZiGRSzIhCaWpqGmMtstlsNDQ00NTUNBO7kEgklyEFq5GqojrNBr0im5vDEUkks4s45yVAZnPOb2bE3RaJRPD5fGOm+3w+wuHwTOxiWlgs89tKpWnqqP8vV66E45THOD0M3XyLVu12LHabOTGXnbNrV36Olw/z9Tj17Gh3soaBNs+fVVcys9rgVggxrY7aM4GqKpSUuOdk31PF53PO9RAuClfCccpjnBrRaJggYHM7cQfcxAALYs6vXfk5Xj7Mt+Psb84x0sHmdlpxXiLPqiuRGRFJPp+PSCQyZno0Gp0waHs2MQxBJDK/q/dqmorP5yQSSaLrl1YDxqlwJRynPMbpkRwwLc2GZiGVNbN+0vEkweDcNKeWn+Plw3w9znR0dOudaDhGyuoaNW2uXxIkw8yISFq6dOmY2KNMJkNbWxvvfe97Z2IX0+JS6fys68YlM9YL4Uo4TnmMUyOXMuMzFJsVI5/hY2Syc34O5ed4+TDfjtPIf+exWiGbRc/kUObR+CSjmRFH6I033siuXbsIBoOFac888wyZTIabbrppJnYhkUguQ4YCtxWbDcVqBUDIbB/JZYowDMjHJKnOvLVIl4kK85kZEUnvf//78Xq93Hfffbzyyis8+uij/P3f/z3veMc7Rrnb/vqv/5rVq1ePWvf06dM8/fTTPP300wCcPHmSp59++rylAyQSyaXPUI0k1WZHtZkiyZAiSXKZUshsU1QUu8P83ZBWpPnMjMUk/fCHP+SBBx7g/vvvx+FwcPfdd/O5z31u1HKGYaCfk+741FNP8eCDDxb+fvTRR3n00Uepq6vj+eefn4nhSSSSecpQtW3VPmxJQtcRhoEia6hJLjfyLwCKzQb5rDshRdK8Zsay2xYvXnzevmtf/vKX+fKXvzxq2v3338/9998/U8OQSOY3Rv4lQVbYBYq728B0uSl2+1wNSyKZFQquZIsVlPxLgCHrJM1nZrUEgEQiyaPnoK8D4vm6Yb5SKK8bvlFeoRgjLUmKgmKxIHI582EiRZLkMkPk8i8FVuuwpVRakuY1V/YdWiK5GBg6dJ0ZFkgAkUHobYcruNmlEKLQzFbNC6Iha5KMS5Jclgy526zWgjVZutvmN1IkSSSzTf9ZSCfNm2LdcqhebE6PhcyfK5QhgQQUXGuK1TRuy9YkksuRUe42aUm6JJAiSSKZTZIxiA6av1cvAocL3D4oqTKnDXaDuDJvkkOZbYrdXqjMXygDkMmMu55EcqkickOWJJsUSZcIMiZJIpkmejJFcO9hkh3dIARdpT4sAT+ax40QBsLQ8boNNAXwloLTM7xyoBIiA5DLQCwM3pI5O465Yqionjoi9kgdEkk5aUmSXIaMdLcNIQO35zVSJEkk0yAXjdP91EvoiVRhWqJ7ALoHCn+7ytxoq6sxdINUSmFU4wFVBV85BLsh3H9liqSheCTHsEiSMUmSyxkx1NzWaoV8ORwZkzS/kSJJIpkiRk6n97nX0BMpLD4PpdduwO5xYc2kGWzpIhNPoqgKJRXm5RXpCBHuaKH6bW7s5SPEkK8Ugj2QTkAqYbririCMZBIA1eEoTBuuui0tSZLLj4K7zWIdztmQImleI0WSRDJFIodOkA1F0Jx2qu68HovbhcWiUlLiRqmqMPtEhfuhvxOhWcjiAEPQ//Ieat95G0q+iBwWK3gCEAtCpB8cDXN6XBcbPW42oNbcw808hwO3pSVJcnkhhBjtbhsqrCxF0rxGBm5LJFMgG4kRPnQSgJJtG7C4i1h/DN0MyAaUkipKr7sa1WEnF4kRO9Uyellfqfl/LHzhsQlCXFIlBfRoFABtxDlUZf82yeXKyG4TI7LbpLttfiNF0gzxy288wncf+N6YtiuSywchBIO73gDDwFFbiWthbfEFgz2m4LHawVeGZrcRWL8SgPDB4wh9xE3R4Qarzcxwi4WLb+98ZNLQ3QzNh8yf7hbIps+72nRI9gfpfuI5Bl/cOe24oUx3DwNP/gY9GgPAUhIozJMxSZLLlSFXG6pqFpJUZcXtSwEpkmYAIQSvPrGDw7uOcObwmbkejmSWSLR2kjrbC6pK6TUbCmnrIxGZFIT6zT/KaiC/jKdxMZrLgZ5IEW/pGF5BUczMNxguFTAVUgnoOAnxyLAlKR42pyXjU9/eBBjZHG2/eZVcJEamb4DkmbZpbSdx/GTBxWApLRmV3aZIS5LkciU3okYSyBIAlwhSJM0AmfRwTZdUcnbe4CVzi5HJEnz9IAD+tY1YfZ4xywghMHraAQEuL7h8hXmKpuJdsQSA6LEmMz5hiCGRlIqbVqHJkkmblbyFYQZ9L2iEBcvB7jJvvN3NkJ2ZekNCCEJ73iQTjhampbt7p7wdI51Gj5kWJOeK5Xg3bRw1XxaTlFyuDJW1UPIiSRnq32gYo+8HknmFFEkzQCY5/CAydPlWMOMYupkBlknPWcxNcN9h9KSZzeZfu6LoMomONkQiZlqHyusKVqQhPCsWg6qS6Q+S7hthNbJYTVEFk7cmCQG9bea5sTuhZon5v90FtUvN3w3ddL1Ns1ilEIJsOEK6p4/I/kMkWjtAUQhsXgdAdjA05Zv7UByS6nLhWr5sVPo/yJgkyWXMUNC2JZ8vpY54/EqRNG+R2W0zQDqVLvq75AIRAkJ9ZozP0IM+H+eDr2z0TWYWSbSdJXaiGc1uoXzrKhQ9Daq90HsJITCCvSR6O82/K+rNcZ6D5rDjXlpP/FQr0WNNOCrLhmd6SyERNUVSafUYgTWGyIApHBXVrOQ9NBYwz0vVItPllkmamXaByikdsxCC8O4DpNo6R02vveFqlOpqQnsPInI5jHQGzTH5RrS5iCmSLD5v0fnKiGKSQoiiLk2J5FKkUCDVeo67DUzL70W6n0mmhhRJM0B6hCUpFU9NsKRk0ggB/Z2mGABQLSB0MyB54CyEeiFQkRdL2sTbugDSvQMkjhyl9up6rC4bpAehI2/tsdrA6oBsGiMfKK2UVCAmKAzpW7mU+KlWEi2d5DYnsbid5gy3zzwOPWeKJbdv3G2Qy8Jgl/l7WTVYbGOXsdqgrBb62mGwBzwlw7EQQLK1g+jBY7gbl+BesXTscXd2FQSSxedFtdvwrlpG2VVLCQbjqC4nRiKJHotPSSQV0v49Y92VMOItG9PlptisRZeTSC41hmsk5b/jI18ADB35OJ6fyE9lBhhpPcqkZM+pGSEWHBZI5XWmGBIGREOmQMplYKALgr1mtWqb03wTE4b5VmYY+d9109pic5htQSyTf+gmWjtQ+topb6wAQJDvuWQYppjJZoZjfhQVd8NCUnY/uj6+6dxWFsBeVU66p5/YiTMENq0prI+3xLT6RAcnFkn9neYY7C6zavd4eEuGLU7BbtPChZlyHHnjCCKTIXrwKI6GWjSnc/Sxn2kFwL1qOd6rzMw8i2X4TdficZPJiyTKS8cfwzkUCkg6HUXnK5pmfo6GYT5UpEiSXC6cE7itKIr5YmToCMNA2kznJ1IkzQCZEcHaI4O4JdNE16H/rPl7aTX480JA0cBfZtYWigZNN1wuYwqLyeJwgacUvIFxLVBCCOJHjuFQk1hKXAhDIEqqUEsrh9fRc5BOmiJJ09C8PlzlftLBOKacGh/vqqWke/qJnmzBv24liiW/TW+peSzxiLl9rcjlGQ+bPwAVCyZ2yymKmWF3tgkiQbOprsVGLhwZ1UA23dWLa8nCwt9GJkOm1xSozoULim56qLaRnkhOeKznYqRMS+vIKttjhm21ItJpGZckuawYDtwecV2rqvkiJzPc5i3SCToDpEdYj9LSknThhEbUGSoWS6MoplBqWAlVC00rk9Nj1hxyesDtR7gDGBY7hi4wsvpwXGQqAf0d0HLUDHxOxkYFTRrZLPF9+3DbM1jsFvScgPpG1PKa0aJKs5jB1v4y8ARQigmacXA11KC5nRipNLHTrcMz7E7zB2GKwHMxdNOKBKar0e4cu8y5DJ0XhGl1AzL9o4PDswOj95Xp6QchsPi8WLzF3WJDAdd6amruZSOZF0nO8ceuytYkkjnASKVIHnqTbG/P7OxgREuSArIMwLxHWpJmgHRy+EEh3W0XSC47bBkaUWeoKIpitvXwBEZNFpkUevOJ0en02RwooPoDKMJAyaZNIRINmmLM5UXoOiI0gKfEvIllDQvW5StnPOZJUVV8a5YT3H2Q8KETeJYvNN1MYAq+vg7TpXhucPpAl3l+LDYoqZ78DkuqzFIB0SCUVpMNmpYoS8BPLhQmGwyNWjwzaIoma8X4bjQt7y4zplDyQuh6wTo0sSXJvC3JgpKSi0m6+Qy5/n5y/f1YysqHr8kZohC4PUIkKapq2p1lQcl5i7QkzQAjA7czMrvtwogMmpYdu2tUnaHJIlIJ9KZjpkCy2lAXLkdbsR6lvAYEGKEQwumHumWme0tRzWDwcD9KLIhmUcllcmRtAazLVs9aULh3qLhkPDm6VYm3xBRBeq7Q2gQwBc5QjFbFgqllwjg9ZkyWMCAaLFS6di4yXWm5cBQxolL8kGXJVjp+APqQJcmYgiVpyIqEphWEUDFkQUnJXKCHhi2qejg049sX55YAANma5BJAiqQZYFTgtoxJmj5CDAsBf/n50+DPXT0eNQVSLgsOJ9rS1ai+EhSbHa2mHrXaDFw2ujsQhoDKeli0GioWkNZthNuC9B7tJuutw1q/cMr7nwqKRcOXr7cUPngCI5cXKYoK5fl2J+E+MzMt1Ae97ea0kqrhmkqT3plSiOsS4X5yUbMSt62yHMVmZsbl8kUihWEULE3WsolEkmkJ0qfwUjAkqDSnY8LUfimSJBcbkc0iRgh+Iz6z1eqFEFDEksSIgpKS+YkUSTPASBebdLddAPEw6Fkz3d/jn9KqRiRoutgMHVwetCWrzEy0ESjl1Sj+UkCgtzWZ1hNVI5PV6N51glDrIPbFi3EumIIr6wLwNi5Cc7vQEymix5uGZ7j9ZswRmFlpA2cBYU4vqZrezjwBUDWUXAarw7wxWzxurAHTWpcNmcIoF4qAYaBYrWge97ib0wqWpPSkC0rqQ5ltE7jaQMYkSS4+RiIx+u8ZFknoeqHW29BLAJjuNnOHUiTNV6RImgHSSVkCACARjJJJXECdqCErki/vBpsEZiuQTozWUyAMFK8fbfGKooHUiqKg1i02awhl0xhdbRjZHH0v7QbDwFlfg2/N8umPf4oomkZg4yoAIgdPYIy0QpbWmG61oWDuslozSH261i1VK8RuOcvcqC4niqZhCZhiNBeKACPikcoCE1p7CpWyDWPSFp/JZLaBjEmSXHyM9Oj71rmi6UIRQ6VCNG10rJN0t817ZOD2DFCsTpKezZHsN9/OXRUBVMvsFTycD5w91MzO7zyJarFwy/94NyUNU6vwTCZlZpqBGbB8HoQQiGgYo7ez0MhVKSlHrVuEMoHAUjQNrX4J+pnjiGAf0fZ+cpEYmstJ2fVXX/QKz+4lDUQOnyQbihI+coqSQt0kZbiy+EyRr5vkCDhJpsxzdK4laSgeyTpBPBKY51GxWRGZLHoyjWorUtDyHAoiaZwaSYVtS3eb5CIj8vdwxeFApFKFel5C18n2dKP5/Wju4pmek9p+vuTGudbt4ew2Gbg9X5EiaQYY2bstl8lw+undnN1zHD1j3uQ1m4WSpXUsuHYNgUXV034Q65kcoZYuomcHiPcMkgrHySXT6JkcqkVDs1lwBDy4yv14a8spWVqL1TXxA2mmOPzrXQhDoGeyHHxsJzfd/66pbWDIiuTymZaecRBCIMKDGH1dZjo/gKqh1i5ECZRN6twqbh9KeTWivxunPUfUqlJ+0xY0+/kf9DONoioENq6m74XXiR49jW/1silVsJ4Sdhe6AZqq4iwx6xwVLEnhqNmrbTAEgG2CeKQhVLsdPZPFSKeB88dJFdL/z2tJku42ycVlyJJkKSkh29WFyKQRuk769CmyZztRrFbc12wfHXQ9FbLFRZIiY5LmPVIkzQBDliSbRWNNoIT2HYcAsDjzQbHJDP3HWuk/1oq3rpyG69dRvmohWM7vUkpH4gycaKf/eBvBM2eHA3zHIdY9ogaOolC6rI7aLSspX9GAos6OlSQViRM+O1D4u/dkB/HBCO7SSWanGfpwY1d/ccuJMAxEqN8UR0Op/aqKUlqJWl499g2t2DaEIDsYJtnVS7K9G3+pitVlo2L9QuyVM2ixmSLOhlpspX4yg2Fip1rxr22cnR0pCplYDqfPgs1hfvcsXjeoKiKXIxcMmxW0AWtp4Lyb0xx29GgMY5LB25N2t+UfRNKSJLlYiLxIUj1esPRBLoeRTJDrM2uLiWyWXH8f1uqa6W1/yN12rsVVutvmPVIkzQDpZBpFgW1LGvDabVjdDla++wbKlteDYgqXrr0n6Np/kmhnP0f+63kcJV4WbF2JunUFYoTlIJfOEunoI9R8lsHTnUQ7R1eTdgQ8+Buq8NSU4izxYXHZsdis6DkdPZMlORgh0Rsi1NJNvDfI4KkOBk914K4qZfEtGylfvXDGXUqDbeaNxFddit3joO/0Wc4ebGb5zesnt4FYyHyTstrAOdoiUbAc9XQMiyPNglpWhVJWNak3O6EbhA+fIHb8DPqI+LHBqJXKVVVYRBYx2IdSNkUX4QyhKAreVUsZ2LGf6PEz+NYsnzVBm+iP4vAG0BSzD55itWPxe8kFw8RPnQFA87gn5T5TRwRvT4bJutsKgds5KZIkF4eh77Bid6A6XRjRCPrg4Cihnu3tnb5IOq+7TYqk+YoUSTNAKplmZXUlJW4nmVyOrZ94O+6KQGG+t6YM7zu2s+iWjXS+fozO3UdJBaOc/s0eTv9mD6pFw+KwmenXiXMeOAr46iooW9lA+YoG3FUlkxY5iYEwXftO0rn7GPGeQQ4//By+BRUsfetWAgtnLoMr2GqKpJKGSvy1pfSdPkv3sbbJiSQhhotH+kan/QvDwDjbggjm51usqBU1KKUVw2bq82Bkc/Q+u4N0j2npUiwajuoKHDWVOOur0dJRjO52jLMtoGmogbmxKLkW1xPccwg9niDd04+jpmLG9yEMg2w4RibqxO5zmOK0pApbWSm5YLjQ0NZePTmxqNrzIil9fpEkdB2ROX8hSRh2t8nAbcnFomBJcthRnU6MaIRsd75OmaaBrqMPDiByuWm53Ia2r9jP+e7LmKR5jxRJM4A1o7Osyny4vtHWxa3+4qnTNo+TxW/ZRMMN6+g51ET/0VZCzV3o2RyZ2HAPLLvPRWBxDSVLaildvgC71zWtcbnK/Cy9YwsN16+jfechOl47QqSjjwPfeYLyVQtZescWXOVTS7UvxpAlqbShkorltRx8dCd9pzrRszm0CYoGApCKm0HbimIGFucR2Qx666nhoOzKWlMgTaG4oxCCgVf3ke4ZQLFaKL1mA+5FC1A0dcQybpR0EhHsx2hvgnQKpbL2ogdwqxYN18I6YqdaiJ9pnxWRpMfiIASpcHKUSLLXVZM43VxYzl43OQE9FUtSoeikqo5KgS6GjEmSXEyEYQxbeuwOVJd5vzXiZiKJtaaW3MAAIpkgN9CPtWrqL5giZd7fFcfodjyyBMD8R4qkC0QIwUKPG0VRaB8M0R2OkkllsE7QvVyzWai9egUN21YR8Lvoau4mHU+DomD3u7E6ZzZw1+qys+S2zdRtW03L8/s5u+8k/cdaGTjRRvWmRuqvWYO76vyBusUQQhDMi6SShZX4aspw+N2kwnEGznRTuaJ4g9QCQ1YkT0mhoatIxEyBlMua1p36ZajeqYu5+Jl2Eq2doCpU3X5d0bijobIAhqIiBnsxejtRknHU+iVT6sc2E7iX1BM71UKitZPSazaMEnMzQS5faTtnqIBiitN0EltFGdbyUrL9g1gryrBVTM6aNh2RpJ6nkCQMlwDAMBC6PuPtISSSkYj0iBhHq3VMX0HN70fRNDKtLWS7uqYskoQQI0TSuZYk87stY5LmL1IkXSC9R5rxO+zkdIOjnWZjxEw6g5vi1iQhBP2tPcRDMRxuB+5NS3GW+rD6Zv8isXtdrHjn9Sy4Zg1Nv93DwMl2M1Zq7wk81aWUNtbjqy3HU1OK3e9BncRDOhmMkY4lUVSVQF05iqJQsbSW9v2n6G/umlAkiUwK4mEUoOXNTgbbDuLzKDSsKEXVVOLhFMdeawflFA6vA3tZAFdVKZ6qEnz1lROKSSOTJbTXDKAPrF81YWC2oihodYswXG6MzhZENITedBRtYeNY8/gsYq8qR3XYMVJp0r0DM25NGhJJmtsDbi/EIxALoZTVUHrjNWT6B7GVl07aijbkbtMn4W6bbGYbjG7bILJZKZIks4pRcIXZzZcm52jLveb3o3l9ZFpb0IODGMnkhA2az0UkE2ZYgapN4G6TImm+IkXSBWDoBmee2QdAU+8A2Xzl4fEKSra8cZpXfvockd5QYZqqqSy5upHVN69nwSwEVRfDXVXCug/fQailm47XjtB/vJVY9+CozDhFVbB5XThKvDj8HhwlHpwBL/aAB2eJB7vPjWrRGGwzhaG/tqzgWitbXE3P0Wa0RBi9swUjl6Efg2wyZZb/FwI9ayBUBZfPQXQgTqKtm4ZFAQKVZi2S/s4wJ1/vwOHQqKhwoKoGerif7lNtJBJZUMBTXUZgcTXlKxcSWFg1bLoGQm8eQ0+msfg8+K6aXIFItaQCxeEyrVjpFHrzcbSlqyeVOTcTKKqCs66KeFMbyY7umRdJEVMkWbwe03IXj0DMbHqraBr2qqntT5uCJUmPm+UaNNf5XceKoqBYrYhsFiObnZSwkkimy1CNpCHRr3qG6yEpdgdqXthoJaXowUGyPd3YFy0+/3aFQO/vQe/qLGz33Pu7dLfNf6RIugD6j7aQGoyQyeVoC4XxBryEB8JF+7ft/tWr7Hl0BwAWu5XS2jISkQSxgQindx/n9O7jBGpKWfuWTay47irsrlmqlTOCwKJqAouqySZS9B9vI9zWY9Zg6g0idIN0OE46HCdcbGXFtEzphsDjsuK0qZx5di+azYJPTXLXBzegaqYLSwDG8GooCqg2FS1fIsHlttK41bQ4CcAIVFG6eC2bVgww8PKe/FuYigZU1XgIxnRCPRFiXQPEugbo2HkEq9tB+coGKlYvwlPuI3rMbPNRunXdlCwRitONtnQ1+hmzSa7RfgZ18YqLFqPkXFBdEEklW9bO6LaHqmpb/F6zHpWimi7NdAIc47cgGQ/VYX5+RjqDEGLCc6Tn2zxo7sntR7FaTEEt45Iks0zBkpQX44qmYV+2nExrC/ZlywrLWSoq0IOD6KHQ5LY70EfuzKnC32pZkZeQQgkAGbg9X5EiaZoIIWjL10Nq7gviLQ8Uelida0k6+My+gkBaf8dmtt1zA1a7DYtFJR2KsvNXOzn26mFCXYO88pNn2fHQ8yxcVU9dlQ9HmR9HfTVWmw2L3YLFZjV/7BacHteMpIpbXQ5qNjVSs8mszyMMQSaeJBWMkgrFRv8Eo6TCMYysTjpiWgccNgvZwQhtrxxk1fYGymrN+kjRwQShnhjJWIZsOkc2rYPFiqcqQO3yMnyKgkBBONxmlWyXG620EsVmR+gGfQeOghC4l9RTdt3V9O/YR+JMO+VlTlbccwvR3jCDpzvpP95GNp6ia99JuvadpLrWi8tpQfV5sVaUTvl8KFYb2qJG9FNHEPHIRS0P4KytBEUhG46SjcaxeqcuXoohcjlyEbOJrbUkYN6c3X7TkhQNTk8k2Ue3JlEmKBswZElS3ZNLQjCDt5OyVpJk1hlqbKuOcIXZ6huw1TeMWk7zm3GReiR83pcCAL3fjNVEVdHKq9DKi/RdlMUk5z1SJE2TUEu3WcNIVWjuH2TJ+uVEQ+ZDaKRI6j7dyas/fQ6Abe+9gc2/s33UdqoXV3PLx+5k2z03cmLHEQ49tx8lFmeRC7R4DOIxTu0+yomWQc5Fs2r4KgKU1JRRvayWmhX1VCysQrvAFiiKqmD3urB7Xfgbxl7YQgiy8RTJUJRXHnwMcjpLtq+mpsaG16NiGIIT+87SfryX2vVLqb16JeULyjGcdiwuJ+g5aDtmNlKtqsfiGRs0HjvVTC4SQ3XYC0HM5ddtMgPjB0KE9x6i+q6bqFq3FEM3CLV003e0mejpdlxOC0IIWg930HTwp5QuraNi9SLKVjZgc0/OdaPYnajVC8z+bj0dZjXvixAbo9pt2CvLSPf0k+zoxrpq6YxsNxuKgBD5FOf8OfAETJEUD0N53ZT7wimalrf45DBS47cmEUKgx/LxUBM0zR2JarWiIwtKSmafoRIWin1i673qcpvXiK4j0umxQdgjEEJgxMzngW31OlT3OBXppbtt3iNF0jRpf9W0Iul+N5mcjr/UV2h0m86LpGw6y7PffgIhBMuvXc3V77i26LbSgxGiTR0sWlLJkpXvoOPJV0A3yCoqFkOnvtpPTGiEoylymRy5TJZcJoee1QmeHSB4doAz+04C4LDb8JR5abxxLfVrFlNaW0bra0do2XEYPZNj0XVXsfTWjeO+BWVSGfRMDoHA7nIUFVyKomDzOEnFUiTjaTSrhRU3r0J0mmnkliUryBxLEE92onld1F7dSEmJm2AwTi5nQKjXvCnYHOAOjNm+EILIUdNd5l+/EjWfKahoGhU3b6Pr8efJ9AcJ7j1E6bb1qJpK6dJaAg2VdP13jFw0jnB7sPgMsgMRBk62M3CyvVCBfMG1ayhdVnf+LKuyShjohUwKMdiLUjG9QnJTxbmginRPP6nOHnwzJZKGerKVjGhc6/Kab7J6zuyb5zp/a5FzUe129GxuwtYkejRmdkHXNDTP5PpfDddKku42yewyXCPpPPW7VNWsoZRIYCTiEy4vUknzulJUFOf4LwYyJmn+I0XSNIj3BvMPXYg7zJu52+fGGzfTPEN9IQD2P7GLcE8Qd4mHmz58u/lwMgyUVBTScUQuzWB7Fi2XI+DTyUS6ifdFsbtsaH4/dW+7nt6X9xM+3szmbctY8PYbC2MwdIPoQIRIb5D+tl7Onuyg+3g7miFIDkTZ9V8v8bryElUlHmwjstROPL2beDhG+epFRPvDRPrCRHpDhHuDhHtCJKOju1/b3Q4C1aWU1pVRWldOaV05ZQsqcAU8DLR0AVC1vAbR1Qbk6xl5AwTqys1z0TkwanvkssNp/6U1Ra0XyY5ucpEYitWKZ9nCUfMsXjdlN2ym77nXiB5rwuJ24V2zDAxB/8t7yEXjaG4n9b9zC4tsVhK9IfqOtdB3tJVY10ChAnlgcQ2Nd1+Lu3L80geKoqJW1GB0NmP0d5sVvtWZTcsvhrO2itC+I6S6+2YsBT7dY5r+bZXlwxMVxbQmRQZMi9J0RJLDjh6Lo4+TrACQ6TGD+62lky+EKluTSC4WQ+UpJpPJqrrceZGUgNLxM2ZF3oqkeDwT3zNkTNK8R4qkadC+4zAA5SsX0tllPnzcPjcOt4ODOw+x5/m9bLpxA288tRuA6z/4FuxOG0q0DyUeQhGj3xo0i4Zm0bC5bHiqvFRdBYZmg3SU0o2NhI83E2/vIRtLYPWYMR2qpuKvDOCvDFB/1WI2vm0bT/3zz+g5ZWZSVNaUYstkUVUFwxAE4ylURaHE46B95xFee3wXuiHOe6zpeIqeprP0NJ0dNd3hdeL3mGmwy1eXmBVjHS7UyloA/AWRNLqtCoNdZiC23TXuQ3ko6NrbuAi1SDFKV30N/o2rCB84RnDvIRJtZ9FTaVNYaSrlN25BzTerdVeV4K4qYdHNG0kMROh8/Shn9x4n1NzF3m88RuM7thdisYqhBMqgpwNyWUR4EKWkfNxlZwprqb9QCiDVO4Cz5sLioUQuR6bPdNfaq88JHi2IpDCUG8Pm/0lyvlpJRiZL6kyLue+62klvV5GtSSQXAZHLQc60Vk4mi7JQaDIRn3A5I26KpHHdbIUNSkvSfEeKpCmSjsTpfvM0AA3Xr+W17/43AG6vi1VbVvH8L1/gbPNZfvvtX5PL5KhZXseytQtQ+5tRdPNiFJoV4fAyeLSN0Ml2LB4ndXduRxVZlHQcJZNE1TMQ7sGhqNRsXkzvm21ETrVRtnFl0XHl0ln6ms0y+m67BUcuB6qCq9yPfUEFSk+QWH+ETDqDTVWoKPdhqQjgLfObYquqxPypDGB12EBAOpEiHowxeLaf4NkBBjv7GezoI9QdJBVN4jJgyapKSksd5LI6j/7kVQL1p1m8cRkL1iwCIBWOk44locSNSMbMIGGA8tqiVqRMKELqrJkRd/J0D7E327HarfirSqi/ahGltaZI8a9biaJqhA4cJd1rWqtUu43yGzbjqCouZFxlPpa/7RoWXLuGk4/vZPBUB8d/9QqJgQhLbru6qJVDUVXUsiqMng6MgR7UiyCSFGW4FECqs/eCRVKmfxAMA9XpQPOe4+5yuMFiNS18iYgpmqaAdp7WJKnWVkQ2i+b1YJuOSJKWJMksMpTZhsUyqXYjwyIpWXS+kYhjxCIYUTOTVHVP7F4uWIl1fVLB4JKLjxRJU6R95xGEbuBvqMLfUEU8755y+934Snxcc8c2dv73DnqOd6AocNdHtqMFTeuO0CwY3kpweAgePk3vgSZQFOruurHwxiE8pQhDR0mEURIhFD1LyQIf/upVRLojpp+7SCXo3qazGDkdl92CK+8CXHrLRhrv3Iw6wl3Td6Kd3d95Ao/dylv+5L1YxqsMroDD48ThcVJWP9r6kMtk6TzcwpsPP8/aa80MkDf2dTDQHWagO0zTnhNYHTbKvS70dJZgex9VC8rQezrMDXhLx2RTCSHoPN7GwI79BCzQ0xdj7+FTnEvV0lo2/852Fm1Yin9tI65FdaQ6ukHTcC2sRbOfv6aRs8TLug/dQcuLB2h54QBtL78JhsGSO7YUblJCCJqOnsFf6qe8ogJ6OyEZRyRiKK7JxdVcCI7aSrMUQGcPJZuvuqBtZXpNa569qmLsTXjI5RbqM9uUTFEknc+SlOkyhbtjyeIpPQCGLIiyBIBkNimW2TYRSr7QpJFMjJkn9ByZowfNe/TQ8p7zWJJG3ssNw+wTJ5lXSJE0BbKJNGf3HAOg4cZ1AMQjptnV5XVz4IX96Kks5S4PmkXlPZ++GY81iwCEqwThLUcoCgN7jjCw7ygAC2+5GldNuRnQPISqmWLJXWLGL0X6US0QWOBH9DYhXH6EuxQsw4Kg+0QHVk0tCKQ0Civftm3MMZQvX4Cr1EdiMEL3wTMs2LxiyufBYrOS6A+x8cZF2OwWcLrY+vH3suS2HpoPnObUrmOEe4LEFQWH1cIL33kKERukwmfWO6J0uKx/pD/MydeOcvyVQ8QHwty2fTGgMpCGtW/ZhKvEQzaZoa+1m85jbfQ0neWJf/0FizYs44YP34av3D+tDDBFVVh86yasLgennniNtlcPYfU4abhuLUII/uMfvseel/ahaSqf/fv7WFVViggNYAz2ol0EkeSsNa1H2WAYPZFCc02/oGImb2kbFY80Ek+JKZIS44vw8ZhIJAldN4O2AWv51BoHyya3kotBIR5pkgVLVZcZYiBSKYRhjIo3MoKDowWS04XqOE9l7pHubT0nRdI8RIqkKdDx+lH0TA53VSlljfUAxKOmSBo8289/f+MxbJpGdamfd3zkGmoW+BAoGIEacJpvFP27DjJ44DgA5VevYsF16wiFxr6VAKAoCKcPHF56Xn0db4kNV5kbJRFGJMIIhxfhCiCsDtoOnMLjtKIAyUyOWDJLLpvDck5Mj6Iq1G9dyYmnd9O++/i0RJIwDIy+HmrWVSIEWOqWoGgqlYtrqFxcw9Z3X0/nsTb2//wl0v0RFD2L354FLOx9tZnuvhOAINwTIjSiyveyxWVYNBXF7eKuL757jOUhHorxxtN7OPjbvbS8cZquk+285VN3s3jjMqbLgmtWY+g6TU/vpuk3u3GW+jjT1cuel8xK6rpu8OOv/Cdf+sZfQGgAERpAVDdMqxP4VNCcDmxlATIDIZJne8YEsE8WI5slGwwBYBuvNYvNYf5kUhAdhMDk3XtD5QT05Fj3Qy5ilh1Q7LYpV82W7jbJxaBgSZrk91Ox2kwho+sYyeSo4qhGzHSxYbWhuj1Y6urPvz1FAYsFcjlELodim/0iwpKpMfupOpcJuXSWjteOALDwxnUoioKe00nFzYvs0CsHAaitKuF9n7mR2sVlZHMGGV81nR1hooMR0gOhgkCquvFqqravn5wLQlGwVlbT8sppOg6cRVdsKICaiqINtsPZk6zdUkfDqmrcpW4ywtxmrD9SdHMLNq8ARWGwuYvYiBYpk6Xv4HGWX2W64JSqBQUT9PBwFRasXsjm99wAwPVvX4PNbqGrPcjrzx6j9c0mWt88YwokBepWNXDrx9/KmqvMqtsl6xqLnhd3wMN177+F33vgY1QuqSGdSPPkV37J64+8UijkOR3qt19F7ZaVIODoz1/kpZ+bda3e9vt34vV7GOwd5I0Dp8HhAiEQwb5p72sqOPLWpOTZ3mlvI9NnWpE0jxttvH5TigL+vJUpPGAG1k8SS744pB5LjPkMckGzVrvF759yrMWwSJLuNsnsYUxVJI3o7WYkRr/cDtVFsi5cjG3FGlSPb3LbHLLc6jLDbT4iLUmTpHP3MXLJNM5SLxVrzL49iXw8kqIotBxtZdHCCn7/D2/C43MSGozx/IunaTv4JPGwaW26ZtNiarx27LWVBNZMzUXkWVyHYtGItPYRae3D4XdSsqQc/4ISLJpC4+bh6rDpZJZgbxRbagAlBmgWhGY13SiqBYffTeWqBnqPttK++xir7i5ev6kYejiInwiqqhKOC0orx68dFKgrZ8HycqobAqAolG3YwNv/tJ54KIqiqrgDHgIlbuJnOkm0tKKLHELAwLE2DMWCb9mCoumzpbXlvOeLH2Tnwy9w8Jl97H1sJ7HBKDd/9M5pFdJUFIXlb7+WZDBK8HQnq71++nwe7vzdOwB48qHf8Ppze9j0P96D0dmCMdiLUl4960GWzrpqIodOkursGWPanyzndbUN4QnAwFnIZSARBffkbvBaXiSJXA6RyYwqyJcL50VSwD/lcQ/HJElLkmT2mKq7DUyXmxGLmo1r8wjDQOQz3pTzZbSdS97FJnT5QjAfkSJpEmTiSVpfegOAhTeZPckAYkPxSE4HS5ZW8sFP3YzdYaX3bIjvfO23iLQAAXannWw6Q6nDvBhe+M0+FgRT3HHvHZMeg2azUr7lKvpee9McU0qn60A7Z9/ooD+To35pBeULS/GWubE7rVQvLAUMiI62eggA1cLG25bSt8hNJpVERAfyZmQrqBazwGARASDiUfSWU2iaSnd7mKpbbpxQKDh9DjbekneFuUpwlZeyKBAAINUfomfXIVqfNesreXx2sKikU1nSZzqJnOnEUR6g7i1bcNeNdf9oFo0bPnQbpXXlvPTD33L8lUMkwnHu/KN3YnNMvSGtqqms+d1beOaBH+K227h9wxocdhtbbrqaJx/6DUf2HSNjd2NRNcikEbEIinfqD/+pYK8sRbXbMNIZUt19OGuLtDU4D0NB2+O62oZQNfCWQbgPQj1meYZJiEBF01CdDoxkilwsgW2kSAoNiaTAlMc9XAIgJ7N+JLPGkNA5b+zQCNQiwdsiETctsBbLpOotjUSxWMz7ck6KpPmIFEmToOX5A+jpLJ6aMqo3DHeUT+TjkTZtXcp7fm8bmkWjq22QF3++lzVV5cRSGYwSP/d84QOET7YyuOMAGV3QMxin5+nd9LZ08/G/vxcUDWGI8/ZhK1nfiL08gMjmcC+s4dQPH4dUmuxAgsPtp7nq3TfgXr2cI0/vYqCpneVbl1HbWGOWHjCyoOdQAIwcdgssWJl/6MZG1zISKKbVSbMiNFM0CV1H9PdgcVgY6IlCZS1WuwWEAShjH6hCoPR14HBZCQ/EyaW8VNYJ4mf76Nt7jMjp9sKizuoStEyKnCF4sbULDworykqgP0TTfz1D5TVrqbrmqqKWlDW3bMAV8PDbrz9G28EzPPZPD3P3n92D0zu5HmEj6Trby7OHjnHnmpXYgBOP72DFO6+nsraC3rN9HNp7nE3LyxEDPYjBHphlkaSoKq6FtcROtpBo6ZyySDLSGXJh0+Vqq5hE6YJABUT6IZWYUgVuze3CSKbMJrZlZnFOI5vFyDe1nY4laUgkgelyU8bLwpRIponZQNm0VA6l9k+GYmUAhlxtqts7dUGfd7dJS9L8RIqk8xBq7aZzjxlHtOyubaOETDwS567fuZq73nE1AKcPdtK+u5WFpaarosLvQnPYSHYPkG43q1NXb1nNe6/dwK8ffJT242088IF/wO60k4gm8JX5ueF9N3NVPubpXBRFwb3AfFDmsjl6eiJU+u14PTaE3UH91pVmM0WXmzOHzpJVndRsu5pCpIgQYOTMLAo9x8CxZqJdvXjLvVQsqQIjh2LoKAjQs6BnGTkKLV88stqXD1bsMetFCXNwZld5FFAA3TD35bDh9IOixkgffxOrblC73EfNstUkU1nauvrxOuzYhJPXDzVxpKmFgYEIz2kW3nLVctbW19K76xCRlrMsfseNWIuIn8Ubl/HOL/w+v/6/P6f3TBePfOmnvONzv4uvfGoP59/87FmiqTR9Lgt1WYXu/adwlQfYdMNGnv6v37Lv5f1s3vYh9IEeRCSEyKRnPdDStWhBQSSVbF2HOoWA8aF4JIvPi+aYxDgtVvCVmRXRB7vA6ZmUNcni9ZDtHyQXiRWm5fLB4qrLOW5Pt4lQVBXFoiFyOiKTBimSJDPMUEyRYrdPKRFjOCYpXrByDhWPPG/KfxFkksL8RoqkCcilMhz7xUsgBNUbllGyeET8jWFQX6KwMS+Q9r98iv4j3XgcVpKZHG19YWpK3PiAEw8/g99vmmD9KxdR4ffykS99gsf+7Zf0tvaQyJoXa6Q/zBPfeIxg9yA3/t4tE47t2HMH6O+NUOmvwO2yUXf9ZtR8PI4nLw5i/eHRKymK6VLTzIvSt2oFex/dSy6ZYe37biLcHaLrcDOK0PGWuSldUErV4gq8Dh1VVchmdVIpHV9lAAWjUDlcAVOAiXMCD/OWH6evuPnZBZTVDAuZu9fUcvf7b0AIQSpj0N0TpL+jn0q7Ez2Rpe3x56i+biPuBdXmtpVhy1L10lq2f/x2Xvz2k4S6Bvnen/876hIf7/34eygrL8XusI8SnkII9u9+kwN73wQhWNjQwO4X9gBww/tvR+2LcPqp1znz2z2suHY1TwMHXz9MSgeb24uIRzEG+9CqF0z4OV0ojuoKLB4XuViCRHMHnuWLJr3upF1tIwlUmhlu6aQplgIV513FEjBfCoYCtQFyg/lecaWlk9/3OahOF3o0ih5PTLrnm0QyWfS8pVN1Ta7p8hCqx3x5EJmMmR3ncGCEQ/l5k4vlG0nhRStTvNaYZG6ZMZHU3NzMAw88wL59+3A6nbz97W/nc5/7HI5JBMT96le/4lvf+hadnZ0sXLiQP/qjP+Kuu+6aqaFNCyOnc+TnL5AKxXAEPCx/+4jg5kwCNdRNecCGnjN4/ldvkDwbptznJGcIxNIFnD7UzKmuft5y/VoCmGJCWCwk+iMomoXSmjI++S+fJhdPEByIYbHbOPjiG7z6i5fY+atX8JX52HDb1UXHlowkOPLUbtwWlWxWx2rV8HiHLQXeClN4RPvDE8ZzWJ12lt68gRNP7ebQL18mmcgWrE6h7jB9zX1UlWgYPjvBgQT7X+tk+yffgR5wk40lyERiJDr7iHf0kBkMoWoqVreN+o11WOwWov1xDu06jcvqIJczOHi2k55IFF0IrFaN9asWcc3KhVgdVhy15VjsGoqeQ1HAaddY3FDO4oZz3URx6DXblggUUDWyOZ22ti4GOnpYsr0Sv+LGyAhi0SS//veHCYZjqFYrN959E1vfspVjh0/xrX/7HkcOmjWvVEWl1leFTbOy+aarWbi8AZZDJpqg7dVD9O06yuYVS9l7ook3XjvIti3LEfEoYrAXUVE9nJ0yCyiqgmfFEkL7DhM5chr30oXndcuCKQLT3fl+bVXnFzoFLFYoq4W+DhjsNq1J9onjNawlAQCywVDh+5bpMwWapXT83njnQ3PnRVJinBIZEskFYERMUa95p2b9UTQN1evDiITRQ0Fz/WwGVA3VNw0XfN7SKjLj9z+UzB0zcnePRCLce++91NbW8tWvfpXBwUH+8R//kVAoxL/8y79MuO7TTz/NF77wBT71qU9x3XXX8eyzz/Knf/qneL1err/++pkY3pTRszmO/fJlBk92oFo1Vv/uLVgcNjOmJzZgVsIGYpEUT/10N0YkRX2lD0MIKm9Yj3dhNS88+gqKovLCziO854bVACTCCU7817PmThQFq9uB0+dGddqxuBzUB1zceNtG3thxhN9+/ykqGiqpaxyutSEMQbC1m/0/exGPVTUfRoqGFYg2teNdYlo1PKVeUMyyBaloEqevuL9dCMGCTctpem4/Qtdxu20svv4qSuor0JMp/FoMu0MjFc/Q1RRm4YISWn/xDLlEquj2EprBmqtrsVg12tv6+F//+DMSyTS3N67B53DSEhygOxGhv3+A2hI/71zdSLi5n1ePNfFfr+zNnxaF0hIvNdWlVFeVUFtTxqJFNVSW+ynzuXG57Gg2DUVRTLegkcOmwrJF1SxbVF10XKPobWJlQOfvP/e7JBJpBCrRcIJEPEU8kULXIDvYg9XlYskta8HQadt5lMZAAGVRA7ueeZ1r3rKlUFfI6O5Aq1s0qe/VdPE0LiJy6ATZUIR4U+ukrEl6LI4eT4Cqnj+z7Vy8pWb17WQMupuhbrkpns7ByGZJHD9JbjCIZtPQM2YMlMhm0MNhUBRsVdNvqVKI/YhLkSSZefS8SJqOsLGUlpKJhMl2d5nXCaCWlE4rA1Wxmi+4QlqS5iUzIpIefvhhIpEIjz76KKV587qmaXzuc5/jM5/5DEuXjp/u/m//9m+89a1v5c///M8BuOaaa2hubuarX/3qnIik6Nl+jj3yCvGeQRRN5arffwv+ah9KuMdsFZK3tZw+1sOzD+/BZdVYWhsAIO5ycu1NGwFYsKKejhPtNFQGcNgspLM5QqiUBpykQzEQgmwsSTY2ugifBly9vIZsTmff95/AuOcWrHYbvcfbOPvGafS06bdWFAV/fSXL37Wds79+mVjLWXKJFBaXA81qwV3iJT4YZbC5i0C5l3QoRiYUJROKFn7X0+abS03ZsKUgc7KZ0NlO6tfXYnNYyaZytO/vxEjlGCmNdCEIJRJ0BcOc7OqlalE5H37/zXg8Drq6g/zzg49TUV/Ftbdupcqw07HrBG+9cTvXfvJtRE62EHz9DRRD0B1P8JuDJwrbFUIwMBhhYDDC4aMto86NqqhsWtTA29avxum0Y2gKh7u7aA4OUFZVxrbtGygt9ZOOJ4j0DVLq8+DzubA7rNicVuwOK6qqYLNZKbVZKRg56s5xR6VD5g/QuKGUJWuuI9wVYvlggv6eMM2v7mfRuqUYbacQg70YTjdUTj3zbLJodhv+dSsJ7j3E4O6D2CtKsQYmNusnW80WMLaKsinFMQGmW7ZqIXSehmwaOk5B9UIYEW8hdJ3onn0Ft5qqKSiqRmTX7kKWjn1BHap9+jFbmsd0g+Si0WlvQyIphpFOFRILNP/URZK1ppZMawt6OISayYt4q51ccBAtUDKl4O2h8gMilZx2qQ/J7KGIC6nCl+dDH/oQXq+Xb3zjG4VpmUyGq6++mj/90z/l4x//eNH12tvbue2223jwwQe5/fbbC9N/9atf8Vd/9Vfs3LmzILqmiq4bDA5O3KkZwNANkgNhwm099B1tIdbZh8Njw18ToGHrchwOUPThgLrB/gQvPXqAzqZ+KgJO6iq8qIpCdyTJW77wITwBM3aio6mDH/7Nt3jbtpW47FbebOrmcHMvd977VirqynFaLCTae+l+8zTZRBpVUVBU0FQVq0VFHeFSyeUM0lmdTFY3C1RmdcpX1HPDH95NLpmm89cvkwlGsFeUYC0rIRuJE2zuglwWbbIXnKZid1nx13gpqw+gqArpeIamN7qJZ3SCySTH2to52dxGKJEkZwhqq0rZuHYJt1x/FYsXmhaDts5BBi1+1l+7sXCjiPUGefbLD+H32lm6dgEiZn4ujtpKKm7ehmK1kE6lyWVzoCioqoqmqaiqSigYpr25g+bTrZw52cKxQyewJHO88+p11OczqTK5HMfO9tLU009fJE46o5vFPg0dh9XK0tIqHBYbKKBaFDKqjm4RqFYVX5mXleuWseHaq0jG47z6/KsEvC4WLayhfkEVVm38m52eNUDoiJwBTjf+BQuIGxZ0oYyKl5oJhGHQ85tXSPcMoNptlGxdh6uhtlBPaNS4kkn6f/MSIpvFf80mnPV109tpNg1dzeb/gOLx462tIZZRCO07SLa3D8ViwbVqBckzLYWHDoCttgbP+rXDDTyngR6LEXrxFVBVSm6/FdU6+8HbFotKSYmbYDA+ulXQZcSVcIww8XGmm8+QaWlG8/txbdo8re2nzjRhdHegaiqGbqCnzZcD1e3BtmgxlooivRKLIIQgvW8X6Dlsq9ejen1UVEw9AFwyO8yISLr22mt573vfy+c+97lR09/+9rezYcMGvvSlLxVd76WXXuJTn/oUTz755Chr08GDB3nf+97HT3/6UzZvnt4XWAiBYZxzaEYOBAjdAM6ZpygTfKEF2axOLp0DQ5jLAkOpX7ousLkdKIaRD2AGgTAbFgKGEOR0gciPR1FAGZk3pipYnXYsNgvCEOjZHEYmO6Ly8blNScdMKSQhicI/Q+dhaIJpAzNjRsBis5jjMP8x5444fj2nk0npIAQ2pxVFHX3M5t8jAqERGLowzw+MLtosjNFjwownsnmcE2ZPhUMRclmzTo4QAj3fKds8ZSp2qxW7RRsjBM3lzTENjWNoNyM/h+FTJUZ/G4bWBXRhYLFoWK0aVqsFLS/gzn/zO2fHYz6x6SGGvmMjKXyG5rGPPOhpvZXmz3dh84V/xsP8Qgpj9L6BC34rFsbQtTrBsSiY9b1mAEUBVVUxDGMqhccvKa6EY4TixymyWfM7lb83KzbblIW80HNmdez8vR7y31BFQZxzrytcm4piZrGNc98Q2ay5TQWwWLBMIyNUMjvMWEySzzfW/O/z+QiHw0XWMBmad+66/rz5c6J1z4eiKGjnWgG06X/xNDtwkRJsrHYrMPniZrOBBbDP8ctMaVlgbgcguWJRrwCXx5VwjHDOcWozULLjAp4j429T9mybr8zqVTLZSrnnLjP0Fiur7EokEolEIpkrZkQk+Xw+IpGxzVSj0WhRC9MQ41mMhrY10boSiUQikUgks8mMiKSlS5fS1NQ0alomk6GtrW3CzLYlS5YAcObMmVHTm5qaUBSlMF8ikUgkEonkYjMjIunGG29k165dBIPBwrRnnnmGTCbDTTfdNO569fX1LFmyhCeffHLU9F//+tesW7du2pltEolEIpFIJBfKjIik97///Xi9Xu677z5eeeUVHn30Uf7+7/+ed7zjHaMsSX/913/N6tWrR637x3/8xzz11FP867/+K6+//jr/8A//wI4dO/jjP/7jmRiaRCKRSCQSybSYkew2n8/HD3/4Qx544AHuv/9+HA4Hd99995iSAIZhoOuj+3vdddddpFIpvvnNb/Ld736XhQsX8q//+q9zVm1bIpFIJBKJBGaoTpJEIpFIJBLJ5caVUShDIpFIJBKJZIpIkSSRSCQSiURSBCmSJBKJRCKRSIogRZJEIpFIJBJJEaRIkkgkEolEIimCFEkSiUQikUgkRZAiSSKRSCQSiaQIM1JMcj6i6waDg/G5HsaEqKpCaambwcE4hnH5lqu6Eo5THuPlgTzGy4dL+TgrKrzTXlcIMS+Peb59HpM9x9KSNIeoqoKiKKiqMtdDmVWuhOOUx3h5II/x8uFKOc5zma/HfKl+HlIkSSQSiUQikRRBiiSJRCKRSCSSIkiRJJFIJBKJRFIEKZIkEolEIpFIiiBFkkQikUgkEkkRLtsSABKJRCKZGwzDQNdzczwGhVRKI5NJo+tzn3IOoGkWVFXaJi4lpEiSSCQSyYwghCASGSSZjM31UADo71cxDGOuhzEKp9ODz1eKolxaqfBXKlIkSSQSiWRGGBJIHk8JNpt9zoWApinzxookhCCTSROLBQHw+8vmeESSySBFkkQikUguGMPQCwLJ4/HN9XAAsFhUcrn5Y0my2ewAxGJBvN6SWXG9Gbo+49 |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
is this the same visual as above? if so, this part could alternatively be the deep dive into the types of datapoints in each cluster
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Added a section for 'Profiling the Clusters' to deep dive into clusters by DenseClus
Resolved most of the comments. Added descriptive stats for analysis on clusters formed and observations. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
few more analysis comments!
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
FYI can't leave comments on specific lines because diff is too big (and github vs code extension doesn't support commenting on notebooks microsoft/vscode-pull-request-github#3462). Will try and be descriptive in comments.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
add a comment explaining why we only take native_country = " United-States"
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Add a markdown description about what/why we are doing in "Create UMAP embeddings & Fit HdbScan for Numerical and Categorical features separately" section (ie "a seemingly straightforward approach may be to try clustering numerical and categorical features separately. lets use this as a baseline to compare against.. ")
also include brief overview of what UMAP and HDBSCAN are - can probably pull this from other notebooks
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
thoughts about baseline separate numerical/categorical cluster analysis:
- cluster results don't look super meaningful, could this be improved with hyperparameter optimization? this may be too much for this notebook though, especially considering this is just supposed to be a baseline and we get reasonable denseclus results. I'm open either way here, any thoughts?
- in the select_dtypes line why are we dropping segment then adding it back in the next line?
- can we expand the analysis to look at more than just mean? I think other descriptive stats might help with the story telling (but understand cluster quality is not good so there isnt much of a story to tell)
- can we see the columns used for categorical clustering?
- categorical analysis points 2 and 3 seem to be conflicting: we are saying both that there is a small finite space where we can have points + we have a large sparse space
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
can we update all of the plots to have appropriate x/y axis labels (or remove the labels) instead of None
@momonga-ml ready for your review |
Summary
Add DenseClusImplentation notebook for jumpstart, it includes: