Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add DenseClus Implementation notebook for jumpstart #60

Merged
merged 17 commits into from
Feb 29, 2024

Conversation

srushtii-aws
Copy link
Contributor

Summary

Add DenseClusImplentation notebook for jumpstart, it includes:

  • Kmeans implementation on numerical features
  • umap embeddings + hdbscan on numerical and categorical features separately
  • DenseClus implementation on all features together using 5 umap combine methods
  • Analysis on the results
  • Conclusion

Copy link
Collaborator

@bharven bharven left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

few notes on the analysis, mostly revolving around pulling in some stats to understand what the points in the clusters actually look like. code quality looks good!

notebooks/DenseClusImplentation.ipynb Outdated Show resolved Hide resolved
notebooks/DenseClusImplentation.ipynb Outdated Show resolved Hide resolved
notebooks/DenseClusImplentation.ipynb Outdated Show resolved Hide resolved
notebooks/DenseClusImplentation.ipynb Outdated Show resolved Hide resolved
notebooks/DenseClusImplentation.ipynb Outdated Show resolved Hide resolved
"id": "e249ddc3-25ff-436f-96e3-a40064bd7716",
"metadata": {},
"source": [
"In the above K-Means implementation using traditional dimension reduction PCA, we can see that the clusters formed using only numeric features are of poor quality. It is beacause KMeans and other such clustering algorithms relies on input features to be numeric and assume that the values are shaped spherical in nature."
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can we try and get a sense of whether the clusters are valuable using descriptive stats? I think it would be cool to understand number/characteristics of numerical vs categorical clusters, then see characteristics of of denseclus clusters that use information from both.

simplified dummy example:
have numerical clusters with age 25-30 working 40 hours/week, ages 16-20 working 20 hours/week. also have categorical clusters with phd degree and academia, HS education and Entrepreneurship.

I think it would be very interesting to identify and compare these groupings to groupings that we find across both feature sets (ie people 20-30 with BS working 60 hrs/week in private sector). could illustrate that we miss information when we look at the two different sets of features in a silo

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Good idea. Added descriptive stats for numerical vs categorical clusters and also for denseclus clusters that use information from both. Also added some observations there.

notebooks/DenseClusImplentation.ipynb Outdated Show resolved Hide resolved
notebooks/DenseClusImplentation.ipynb Outdated Show resolved Hide resolved
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAKmCAYAAABZkgpjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9Z3gc532vfc/M9o7eCLCDTaxikaguq1i2HDc5cdzkEju2YuWkOLET57wnOZET5yTnxLEVt7iXSHGRpcgqtnohRbFK7A1EJzq295153g+zWADEAgRAgADJ574ukMDUZ2Z3Zn7zr4oQQiCRSCQSiUQiGYU61wOQSCQSiUQimY9IkSSRSCQSiURSBCmSJBKJRCKRSIogRZJEIpFIJBJJEaRIkkgkEolEIimCFEkSiUQikUgkRZAiSSKRSCQSiaQIUiRJJBKJRCKRFEGKJIlEIpFIJJIiSJEkkVwhfOELX2DFihV0dHTMyf4feeQRVqxYwSOPPDIn+5dIJJKpIkWSRDILrFixghUrVrBq1So6OzvHXe5tb3tbYdmdO3de0D6/9rWvsWLFCl5//fUL2o5k6nz4wx9mxYoVcz2MosznsUkk8x0pkiSSWcJisWAYxriWk3379tHU1ITFYrnII5NIJBLJZJAiSSKZJcrKylizZg2PPPIIhmGMmf+LX/wCq9XK9u3b52B0EolEIjkf8hVWIplF7rnnHv7u7/6OHTt2cMMNNxSmx2Ixnn76aW699VZcLte463d3d/Ptb3+bl156iZ6eHtxuNxs3buS+++5j3bp1heVuvfXWglvvIx/5yKhtnDhxYsx2H374YX7605/S0tKC1+vl1ltv5S//8i/x+Xxjlj106BDf+ta32LdvH9FolIqKCm688Ubuu+8+qqqqxizf2trK//2//5fXXnuNbDbLypUr+cM//MPzn6wpEgqF+P73v89zzz1He3s7FouFurq6wthGntfm5ma+/vWv89prrxEKhQgEAlx77bXcd999LF68eNR2v/a1r/Hggw/yox/9iGAwyHe+8x1OnTqF3W5n+/btfOELX6C6uhqAjo4O3vKWtxTWHenW2rp1Kz/+8Y8B8/MBeOyxx/i3f/s3nnvuOXp7e/n0pz/N/fffT09PDz//+c959dVXaW9vJxwOEwgE2Lp1K5/5zGdYvnz5mON/5pln+NGPfsSZM2cIh8P4/X4aGhq4++67+eAHPzjpsUkkkvGRIkkimUXe8Y538H/+z//h5z//+SiR9Pjjj5NIJLjnnnt48skni6575MgRPv7xjxMOh7n++uu54447CAaDPPvss3zgAx/g3//937npppsAUxg999xz7N69m3e/+93U1dWNO6Z//ud/5tVXX+WWW27huuuu4/XXX+fnP/85LS0t/OQnPxm17LPPPsuf/MmfAHDnnXdSW1vL4cOHefjhh3nuued46KGHqK+vLyzf0tLC7/3e7xEKhbjxxhtZtWoVra2t/NEf/RE33nhj0fE88sgj/NVf/RXvfve7+fKXvzyp89re3s69995LZ2cna9as4fd///cxDIPm5mZ+8IMf8P73v78gkt58800+9rGPkUgkeMtb3sLSpUtpamri8ccf57nnnuP73/8+69evH7OP//zP/+T555/n1ltvZcuWLRw8eJCnnnqKY8eO8fjjj2Oz2fD5fHz2s5/lV7/6FZ2dnXz2s58trH/uZ5DJZLj33nsLn6fL5Soss3fvXv7jP/6Dbdu2cccdd+B0OmltbeU3v/kNzz//PA899BCrVq0aNba/+7u/o6KigltvvZWSkhIGBgY4ceIEjzzyCB/84AenNDaJRDIOQiKRzDiNjY3ihhtuEEII8Zd/+ZdizZo1YmBgoDD/3e9+t7j55puFruvi85//vGhsbBQ7duwozM9ms+K2224Ta9euFXv27Bm17e7ubnH99deL7du3i1QqVZj+1a9+VTQ2Nopdu3YVHdPQfm6++WbR2dk5al8f+MAHRGNjo3jjjTcK02OxmNi6datYtWqV2Ldv36htffOb3xSNjY3iox/96KjpH/vYx0RjY6P4wQ9+MGr6M888IxobG0VjY6P45S9/OWreL3/5S9HY2Cg+//nPFx13MX7v935PNDY2im9+85tj5g0MDBTOi67r4s477xSNjY3iiSeeGLXc448/LhobG8Udd9whdF0vTB86jxs3bhTHjx8ftc6f/dmfFd3Whz70IdHY2DjueG+55RbR2Ngo7r33XhGPx8fM7+/vF9FodMz0w4cPi/Xr14uPf/zjo6a/613vEmvWrBH9/f1Fj38qY5NIJOMjY5Ikklnmfe97H9lslsceewyAY8eOceTIEd7znvegqsUvwRdffJG2tjY+9KEPsXnz5lHzqqqq+IM/+AP6+/t57bXXpjye++67j9ra2sLfFouF97znPYDpWhvi2WefJRQK8ba3vY1NmzaN2sbHP/5x6urq2LlzZ8HN193dzY4dO1iwYAEf+tCHRi1/2223sXXr1qLjuf3223nyySf5sz/7s0mN//Dhwxw4cIBVq1bxyU9+csz80tJS7HY7APv376e5uZlNmzbxtre9bdRyd999Nxs3bqSlpYV9+/aN2c5HPvKRMVlh73vf+4DR52kqfP7zny/qXi0rK8Pj8YyZvmbNGq655hp2795NNpstTFcUBYvFUjTov7S0dFpjk0gkY5HuNolkltm8eTOLFy/mF7/4BR/72Mf42c9+hqqqvPe97x13nTfeeAOAzs5Ovva1r42Z39LSAsCZM2e4+eabpzSetWvXjplWU1MDQDgcLkw7duwYANu2bRuzvNVqZcuWLXR2dnLs2DHq6uo4evQoAFdffTWapo1ZZ+vWrezevXvMdK/Xi9frnfT433zzTQCuv/76cUXmZI4BYPv27Rw4cIAjR46wZcuWUfOuuuqqMcsXO0+TxWazsXLlynHnv/jiizz88MMcPnyYYDBILpcbNT8YDFJZWQmYbtwvf/nLvP3tb+ftb387W7ZsYdOmTVIgSSQzjBRJEslF4J577uGf//mfee211/j1r3/N9u3bR1lzziUUCgHw9NNPT7jdRCIx5bEUs1gMiZqRWXjRaBSAioqKotsZmj603ND/ZWVlRZcvLy+f8liLEYlEAIoGjZ/LZI8hFouNmVdMuBU7T5OlvLwcRVGKzvvRj37El770Jfx+P9u3b6empgan04miKDz77LMcP36cTCZTWP5jH/sYJSUl/Od//ic/+tGP+MEPfoCiKGzbto2//Mu/ZM2aNVMen0QiGYsUSRLJReDd7343X/nKV/jCF75AJBLhnnvumXD5oQf017/+9VEZSheToTH09fUVnT80fWi5of8HBgaKLt/f3z8j4xrKwOvp6TnvspM9hmLCcaYZTyDlcjm+9rWvUVFRwSOPPFKwFg0xZFU8l3e96128613vIhKJcODAAZ555hl++ctf8vGPf5ynnnpKWpUkkhlAxiRJJBeBsrIybr75Zrq7uykpKTmv8BnKttq7d++k9zHkepqOlaMYQ9lUxVxkuVyuEMezevXqUf/v27cPXdfHrFNsO9Nh6Nzs3LkTIcSEy050DCOnX6jlZejcFzvu8xEMBolEImzcuHGMQIrH4xw5cmTC9X0+HzfddBMPPPAA7373uwmFQqO+NxcyNonkSueytSTpusHgYHyuhzEhqqpQWupmcDCOYUx8s7+UuRKOs9gxGoagry9aWOaTn/wst9xyJ+Xl5YTDaSANQCplBuSGQonC8uvXb6OubgE//elPWbVqHddee/2YfR4+fJBlyxpxOBwAWCxOAE6ebGbZsrHxNEP7GRyMY7dHR80LhUy3XTyeLoxhw4Zr8Pn8PPHEE7ztbe9m3bp1hWP8yU9+RHt7O5s3b8Vq9dLXF0XT3GzZso09e17nm9/8Lr/7u79f2P4rr7xYECTRaGrUeYnFYgwM9ON2eyblkquqWsjates4dOggX/3q1/nAB0bXhQqHQzgcTux2Ow0NjTQ0LGTfvn387Ge/4pZbbiss98ILz7Jnzx7q6xtoaGikry+KqioF4TXy8xhi6J6SSmVHzXM6TUvUkSOnqakZ60bVdVO4nrs9AMOw4XA4ePPNg7S29hQCu3O5HP/8z/9AMBgs7Hvoc9u1ayebN28dE7jd1dWbH59e2Ne5Y7sSrke4tO87FRWTj9GTzC6XrUi6FFBVBUVRUFXlkruIp8KVcJyTOcba2jpqaydXn8ZisfClL/0zf/7nn+Uv/uJPWLt2HcuWrcDhcNDb282xY0c5e7aTxx57uiCSNm3ajKqqfOtbD9LUdLrgavroR/9gWsfkcrn4q7/6n/zP//kF7r//U9x6620sWtTAG2+8yeuv76KsrIy/+Iu/HrXOn/3Z5/n0pz/GV7/6f9mzZxfLljXS0dHOyy+/wHXX3cCOHa+M2c/LL7/AP/zD33HXXXfzxS/+7aTG9j//599z//1/yNe//lWef/5ZNmzYhBCCjo429ux5nZ/+9BfU1NSiKApf/OLf8ad/+kf8r//11zzzzG9YuHARbW0tvPLKS7hcbv7mb/53wdoy9DlOlauv3sILLzzLF7/4F2zbth273U51dQ1vfevbz7uuqqrcc8/7+clPfsC9976f66+/iWw2y4EDe4lEImzatJn9+0dbFP/2b/8am83OunXrqa6uRQjBwYMHOHbsKI2NK9m8eThQ/dyxOZ1Oli5dyE033X7ZXo9wZdx3JLOPFEkSyTxl2bLl/OAHD/Hwwz9l585XePLJ/0ZVVcrKymlsXMEnPvGH+P2BwvKLFi3mi1/8Wx566Cf86le/IJMxLVXTFUkAN9xwM9/4xnf50Y++z+uvv8bzzz9LaWkZ73rXe/noR/+A8vLRAdH19Q1861s/4Jvf/Bp79+7mwIF9LF26nH/8x/9LKBQsKpKGyA4MYmSyqDbrecdVW1vH9773E3760x/xyisv8sgjP8Nms1FdXcvv/d4HKSkZjsdZs+YqvvOdH/LDH36XvXt3s2PHywQCAW677U4++tFP0NCwaJpnZ5h3vONd9PR08+yzv+U///NH6LrOhg2bJiWSAP7gDz5NIBDg179+jMceewSPx8OWLVv55Cfv47vf/daY5T/96c/y+uu7OHHiBK+9tgObzU51dTWf+cz9vPvd92C1Dp/DYmPbunUrN910+wUft0RyuaOI8zn1L1EuBXebxaJSUuImGIyTy81MHMl85Eo4TnmM08dIpwk+8zwArpWNOJctnbFtTxX5OV4+XMrHKd1t8wcZuC2RSOaUXDgy/HtkbMyORCKRzBVSJEkkkjlFH1GjSC9Sr0gikUjmCimSJBLJnGKk08O/T6M4pkQikcwWUiRJJJI5RYyoJC1yOkLW85Fc5gghMOKx89b5ksw9UiRJJJI5xUhnzvk7Pc6SEsnlgX62nczhA+Q6Wud6KJLzMGMiqbm5mU984hNs2LCBa6+9lgceeIBUKnXe9Z588knuv/9+brjhBlasWMF3v/vdmRqSRCK5BBgrkjLjLCmRXB4MiSP9bPscj0RyPmZEJEUiEe69917i8Thf/epX+fznP8/jjz/O3/zN35x33aeffpr29nZuueWWmRiKRCK5xBjpbgMQ0pIkuYyRLrZLixkpJvnwww8TiUR49NFHC00VNU3jc5/7HJ/5zGdYunT8uidf+cpXCtVu/+u//msmhiORSC4RhBAF95rmcaPH4tKSJLmsEank6L8NHUXV5mg0kvMxI5akl19+mWuvvXZU1+k777wTm83GSy+9NPEAVBkWJZFcseg65Bvyavk2KkZGWpIkly/niiSy2bkZiGRSzIhCaWpqGmMtstlsNDQ00NTUNBO7kEgklyEFq5GqojrNBr0im5vDEUkks4s45yVAZnPOb2bE3RaJRPD5fGOm+3w+wuHwTOxiWlgs89tKpWnqqP8vV66E45THOD0M3XyLVu12LHabOTGXnbNrV36Olw/z9Tj17Gh3soaBNs+fVVcys9rgVggxrY7aM4GqKpSUuOdk31PF53PO9RAuClfCccpjnBrRaJggYHM7cQfcxAALYs6vXfk5Xj7Mt+Psb84x0sHmdlpxXiLPqiuRGRFJPp+PSCQyZno0Gp0waHs2MQxBJDK/q/dqmorP5yQSSaLrl1YDxqlwJRynPMbpkRwwLc2GZiGVNbN+0vEkweDcNKeWn+Plw3w9znR0dOudaDhGyuoaNW2uXxIkw8yISFq6dOmY2KNMJkNbWxvvfe97Z2IX0+JS6fys68YlM9YL4Uo4TnmMUyOXMuMzFJsVI5/hY2Syc34O5ed4+TDfjtPIf+exWiGbRc/kUObR+CSjmRFH6I033siuXbsIBoOFac888wyZTIabbrppJnYhkUguQ4YCtxWbDcVqBUDIbB/JZYowDMjHJKnOvLVIl4kK85kZEUnvf//78Xq93Hfffbzyyis8+uij/P3f/z3veMc7Rrnb/vqv/5rVq1ePWvf06dM8/fTTPP300wCcPHmSp59++rylAyQSyaXPUI0k1WZHtZkiyZAiSXKZUshsU1QUu8P83ZBWpPnMjMUk/fCHP+SBBx7g/vvvx+FwcPfdd/O5z31u1HKGYaCfk+741FNP8eCDDxb+fvTRR3n00Uepq6vj+eefn4nhSSSSecpQtW3VPmxJQtcRhoEia6hJLjfyLwCKzQb5rDshRdK8Zsay2xYvXnzevmtf/vKX+fKXvzxq2v3338/9998/U8OQSOY3Rv4lQVbYBYq728B0uSl2+1wNSyKZFQquZIsVlPxLgCHrJM1nZrUEgEQiyaPnoK8D4vm6Yb5SKK8bvlFeoRgjLUmKgmKxIHI582EiRZLkMkPk8i8FVuuwpVRakuY1V/YdWiK5GBg6dJ0ZFkgAkUHobYcruNmlEKLQzFbNC6Iha5KMS5Jclgy526zWgjVZutvmN1IkSSSzTf9ZSCfNm2LdcqhebE6PhcyfK5QhgQQUXGuK1TRuy9YkksuRUe42aUm6JJAiSSKZTZIxiA6av1cvAocL3D4oqTKnDXaDuDJvkkOZbYrdXqjMXygDkMmMu55EcqkickOWJJsUSZcIMiZJIpkmejJFcO9hkh3dIARdpT4sAT+ax40QBsLQ8boNNAXwloLTM7xyoBIiA5DLQCwM3pI5O465Yqionjoi9kgdEkk5aUmSXIaMdLcNIQO35zVSJEkk0yAXjdP91EvoiVRhWqJ7ALoHCn+7ytxoq6sxdINUSmFU4wFVBV85BLsh3H9liqSheCTHsEiSMUmSyxkx1NzWaoV8ORwZkzS/kSJJIpkiRk6n97nX0BMpLD4PpdduwO5xYc2kGWzpIhNPoqgKJRXm5RXpCBHuaKH6bW7s5SPEkK8Ugj2QTkAqYbririCMZBIA1eEoTBuuui0tSZLLj4K7zWIdztmQImleI0WSRDJFIodOkA1F0Jx2qu68HovbhcWiUlLiRqmqMPtEhfuhvxOhWcjiAEPQ//Ieat95G0q+iBwWK3gCEAtCpB8cDXN6XBcbPW42oNbcw808hwO3pSVJcnkhhBjtbhsqrCxF0rxGBm5LJFMgG4kRPnQSgJJtG7C4i1h/DN0MyAaUkipKr7sa1WEnF4kRO9Uyellfqfl/LHzhsQlCXFIlBfRoFABtxDlUZf82yeXKyG4TI7LbpLttfiNF0gzxy288wncf+N6YtiuSywchBIO73gDDwFFbiWthbfEFgz2m4LHawVeGZrcRWL8SgPDB4wh9xE3R4Qarzcxwi4WLb+98ZNLQ3QzNh8yf7hbIps+72nRI9gfpfuI5Bl/cOe24oUx3DwNP/gY9GgPAUhIozJMxSZLLlSFXG6pqFpJUZcXtSwEpkmYAIQSvPrGDw7uOcObwmbkejmSWSLR2kjrbC6pK6TUbCmnrIxGZFIT6zT/KaiC/jKdxMZrLgZ5IEW/pGF5BUczMNxguFTAVUgnoOAnxyLAlKR42pyXjU9/eBBjZHG2/eZVcJEamb4DkmbZpbSdx/GTBxWApLRmV3aZIS5LkciU3okYSyBIAlwhSJM0AmfRwTZdUcnbe4CVzi5HJEnz9IAD+tY1YfZ4xywghMHraAQEuL7h8hXmKpuJdsQSA6LEmMz5hiCGRlIqbVqHJkkmblbyFYQZ9L2iEBcvB7jJvvN3NkJ2ZekNCCEJ73iQTjhampbt7p7wdI51Gj5kWJOeK5Xg3bRw1XxaTlFyuDJW1UPIiSRnq32gYo+8HknmFFEkzQCY5/CAydPlWMOMYupkBlknPWcxNcN9h9KSZzeZfu6LoMomONkQiZlqHyusKVqQhPCsWg6qS6Q+S7hthNbJYTVEFk7cmCQG9bea5sTuhZon5v90FtUvN3w3ddL1Ns1ilEIJsOEK6p4/I/kMkWjtAUQhsXgdAdjA05Zv7UByS6nLhWr5sVPo/yJgkyWXMUNC2JZ8vpY54/EqRNG+R2W0zQDqVLvq75AIRAkJ9ZozP0IM+H+eDr2z0TWYWSbSdJXaiGc1uoXzrKhQ9Daq90HsJITCCvSR6O82/K+rNcZ6D5rDjXlpP/FQr0WNNOCrLhmd6SyERNUVSafUYgTWGyIApHBXVrOQ9NBYwz0vVItPllkmamXaByikdsxCC8O4DpNo6R02vveFqlOpqQnsPInI5jHQGzTH5RrS5iCmSLD5v0fnKiGKSQoiiLk2J5FKkUCDVeo67DUzL70W6n0mmhhRJM0B6hCUpFU9NsKRk0ggB/Z2mGABQLSB0MyB54CyEeiFQkRdL2sTbugDSvQMkjhyl9up6rC4bpAehI2/tsdrA6oBsGiMfKK2UVCAmKAzpW7mU+KlWEi2d5DYnsbid5gy3zzwOPWeKJbdv3G2Qy8Jgl/l7WTVYbGOXsdqgrBb62mGwBzwlw7EQQLK1g+jBY7gbl+BesXTscXd2FQSSxedFtdvwrlpG2VVLCQbjqC4nRiKJHotPSSQV0v49Y92VMOItG9PlptisRZeTSC41hmsk5b/jI18ADB35OJ6fyE9lBhhpPcqkZM+pGSEWHBZI5XWmGBIGREOmQMplYKALgr1mtWqb03wTE4b5VmYY+d9109pic5htQSyTf+gmWjtQ+topb6wAQJDvuWQYppjJZoZjfhQVd8NCUnY/uj6+6dxWFsBeVU66p5/YiTMENq0prI+3xLT6RAcnFkn9neYY7C6zavd4eEuGLU7BbtPChZlyHHnjCCKTIXrwKI6GWjSnc/Sxn2kFwL1qOd6rzMw8i2X4TdficZPJiyTKS8cfwzkUCkg6HUXnK5pmfo6GYT5UpEiSXC6cE7itKIr5YmToCMNA2kznJ1IkzQCZEcHaI4O4JdNE16H/rPl7aTX480JA0cBfZtYWigZNN1wuYwqLyeJwgacUvIFxLVBCCOJHjuFQk1hKXAhDIEqqUEsrh9fRc5BOmiJJ09C8PlzlftLBOKacGh/vqqWke/qJnmzBv24liiW/TW+peSzxiLl9rcjlGQ+bPwAVCyZ2yymKmWF3tgkiQbOprsVGLhwZ1UA23dWLa8nCwt9GJkOm1xSozoULim56qLaRnkhOeKznYqRMS+vIKttjhm21ItJpGZckuawYDtwecV2rqvkiJzPc5i3SCToDpEdYj9LSknThhEbUGSoWS6MoplBqWAlVC00rk9Nj1hxyesDtR7gDGBY7hi4wsvpwXGQqAf0d0HLUDHxOxkYFTRrZLPF9+3DbM1jsFvScgPpG1PKa0aJKs5jB1v4y8ARQigmacXA11KC5nRipNLHTrcMz7E7zB2GKwHMxdNOKBKar0e4cu8y5DJ0XhGl1AzL9o4PDswOj95Xp6QchsPi8WLzF3WJDAdd6amruZSOZF0nO8ceuytYkkjnASKVIHnqTbG/P7OxgREuSArIMwLxHWpJmgHRy+EEh3W0XSC47bBkaUWeoKIpitvXwBEZNFpkUevOJ0en02RwooPoDKMJAyaZNIRINmmLM5UXoOiI0gKfEvIllDQvW5StnPOZJUVV8a5YT3H2Q8KETeJYvNN1MYAq+vg7TpXhucPpAl3l+LDYoqZ78DkuqzFIB0SCUVpMNmpYoS8BPLhQmGwyNWjwzaIoma8X4bjQt7y4zplDyQuh6wTo0sSXJvC3JgpKSi0m6+Qy5/n5y/f1YysqHr8kZohC4PUIkKapq2p1lQcl5i7QkzQAjA7czMrvtwogMmpYdu2tUnaHJIlIJ9KZjpkCy2lAXLkdbsR6lvAYEGKEQwumHumWme0tRzWDwcD9KLIhmUcllcmRtAazLVs9aULh3qLhkPDm6VYm3xBRBeq7Q2gQwBc5QjFbFgqllwjg9ZkyWMCAaLFS6di4yXWm5cBQxolL8kGXJVjp+APqQJcmYgiVpyIqEphWEUDFkQUnJXKCHhi2qejg049sX55YAANma5BJAiqQZYFTgtoxJmj5CDAsBf/n50+DPXT0eNQVSLgsOJ9rS1ai+EhSbHa2mHrXaDFw2ujsQhoDKeli0GioWkNZthNuC9B7tJuutw1q/cMr7nwqKRcOXr7cUPngCI5cXKYoK5fl2J+E+MzMt1Ae97ea0kqrhmkqT3plSiOsS4X5yUbMSt62yHMVmZsbl8kUihWEULE3WsolEkmkJ0qfwUjAkqDSnY8LUfimSJBcbkc0iRgh+Iz6z1eqFEFDEksSIgpKS+YkUSTPASBebdLddAPEw6Fkz3d/jn9KqRiRoutgMHVwetCWrzEy0ESjl1Sj+UkCgtzWZ1hNVI5PV6N51glDrIPbFi3EumIIr6wLwNi5Cc7vQEymix5uGZ7j9ZswRmFlpA2cBYU4vqZrezjwBUDWUXAarw7wxWzxurAHTWpcNmcIoF4qAYaBYrWge97ib0wqWpPSkC0rqQ5ltE7jaQMYkSS4+RiIx+u8ZFknoeqHW29BLAJjuNnOHUiTNV6RImgHSSVkCACARjJJJXECdqCErki/vBpsEZiuQTozWUyAMFK8fbfGKooHUiqKg1i02awhl0xhdbRjZHH0v7QbDwFlfg2/N8umPf4oomkZg4yoAIgdPYIy0QpbWmG61oWDuslozSH261i1VK8RuOcvcqC4niqZhCZhiNBeKACPikcoCE1p7CpWyDWPSFp/JZLaBjEmSXHyM9Oj71rmi6UIRQ6VCNG10rJN0t817ZOD2DFCsTpKezZHsN9/OXRUBVMvsFTycD5w91MzO7zyJarFwy/94NyUNU6vwTCZlZpqBGbB8HoQQiGgYo7ez0MhVKSlHrVuEMoHAUjQNrX4J+pnjiGAf0fZ+cpEYmstJ2fVXX/QKz+4lDUQOnyQbihI+coqSQt0kZbiy+EyRr5vkCDhJpsxzdK4laSgeyTpBPBKY51GxWRGZLHoyjWorUtDyHAoiaZwaSYVtS3eb5CIj8vdwxeFApFKFel5C18n2dKP5/Wju4pmek9p+vuTGudbt4ew2Gbg9X5EiaQYY2bstl8lw+undnN1zHD1j3uQ1m4WSpXUsuHYNgUXV034Q65kcoZYuomcHiPcMkgrHySXT6JkcqkVDs1lwBDy4yv14a8spWVqL1TXxA2mmOPzrXQhDoGeyHHxsJzfd/66pbWDIiuTymZaecRBCIMKDGH1dZjo/gKqh1i5ECZRN6twqbh9KeTWivxunPUfUqlJ+0xY0+/kf9DONoioENq6m74XXiR49jW/1silVsJ4Sdhe6AZqq4iwx6xwVLEnhqNmrbTAEgG2CeKQhVLsdPZPFSKeB88dJFdL/z2tJku42ycVlyJJkKSkh29WFyKQRuk769CmyZztRrFbc12wfHXQ9FbLFRZIiY5LmPVIkzQBDliSbRWNNoIT2HYcAsDjzQbHJDP3HWuk/1oq3rpyG69dRvmohWM7vUkpH4gycaKf/eBvBM2eHA3zHIdY9ogaOolC6rI7aLSspX9GAos6OlSQViRM+O1D4u/dkB/HBCO7SSWanGfpwY1d/ccuJMAxEqN8UR0Op/aqKUlqJWl499g2t2DaEIDsYJtnVS7K9G3+pitVlo2L9QuyVM2ixmSLOhlpspX4yg2Fip1rxr22cnR0pCplYDqfPgs1hfvcsXjeoKiKXIxcMmxW0AWtp4Lyb0xx29GgMY5LB25N2t+UfRNKSJLlYiLxIUj1esPRBLoeRTJDrM2uLiWyWXH8f1uqa6W1/yN12rsVVutvmPVIkzQDpZBpFgW1LGvDabVjdDla++wbKlteDYgqXrr0n6Np/kmhnP0f+63kcJV4WbF2JunUFYoTlIJfOEunoI9R8lsHTnUQ7R1eTdgQ8+Buq8NSU4izxYXHZsdis6DkdPZMlORgh0Rsi1NJNvDfI4KkOBk914K4qZfEtGylfvXDGXUqDbeaNxFddit3joO/0Wc4ebGb5zesnt4FYyHyTstrAOdoiUbAc9XQMiyPNglpWhVJWNak3O6EbhA+fIHb8DPqI+LHBqJXKVVVYRBYx2IdSNkUX4QyhKAreVUsZ2LGf6PEz+NYsnzVBm+iP4vAG0BSzD55itWPxe8kFw8RPnQFA87gn5T5TRwRvT4bJutsKgds5KZIkF4eh77Bid6A6XRjRCPrg4Cihnu3tnb5IOq+7TYqk+YoUSTNAKplmZXUlJW4nmVyOrZ94O+6KQGG+t6YM7zu2s+iWjXS+fozO3UdJBaOc/s0eTv9mD6pFw+KwmenXiXMeOAr46iooW9lA+YoG3FUlkxY5iYEwXftO0rn7GPGeQQ4//By+BRUsfetWAgtnLoMr2GqKpJKGSvy1pfSdPkv3sbbJiSQhhotH+kan/QvDwDjbggjm51usqBU1KKUVw2bq82Bkc/Q+u4N0j2npUiwajuoKHDWVOOur0dJRjO52jLMtoGmogbmxKLkW1xPccwg9niDd04+jpmLG9yEMg2w4RibqxO5zmOK0pApbWSm5YLjQ0NZePTmxqNrzIil9fpEkdB2ROX8hSRh2t8nAbcnFomBJcthRnU6MaIRsd75OmaaBrqMPDiByuWm53Ia2r9jP+e7LmKR5jxRJM4A1o7Osyny4vtHWxa3+4qnTNo+TxW/ZRMMN6+g51ET/0VZCzV3o2RyZ2HAPLLvPRWBxDSVLaildvgC71zWtcbnK/Cy9YwsN16+jfechOl47QqSjjwPfeYLyVQtZescWXOVTS7UvxpAlqbShkorltRx8dCd9pzrRszm0CYoGApCKm0HbimIGFucR2Qx666nhoOzKWlMgTaG4oxCCgVf3ke4ZQLFaKL1mA+5FC1A0dcQybpR0EhHsx2hvgnQKpbL2ogdwqxYN18I6YqdaiJ9pnxWRpMfiIASpcHKUSLLXVZM43VxYzl43OQE9FUtSoeikqo5KgS6GjEmSXEyEYQxbeuwOVJd5vzXiZiKJtaaW3MAAIpkgN9CPtWrqL5giZd7fFcfodjyyBMD8R4qkC0QIwUKPG0VRaB8M0R2OkkllsE7QvVyzWai9egUN21YR8Lvoau4mHU+DomD3u7E6ZzZw1+qys+S2zdRtW03L8/s5u+8k/cdaGTjRRvWmRuqvWYO76vyBusUQQhDMi6SShZX4aspw+N2kwnEGznRTuaJ4g9QCQ1YkT0mhoatIxEyBlMua1p36ZajeqYu5+Jl2Eq2doCpU3X5d0bijobIAhqIiBnsxejtRknHU+iVT6sc2E7iX1BM71UKitZPSazaMEnMzQS5faTtnqIBiitN0EltFGdbyUrL9g1gryrBVTM6aNh2RpJ6nkCQMlwDAMBC6PuPtISSSkYj0iBhHq3VMX0HN70fRNDKtLWS7uqYskoQQI0TSuZYk87stY5LmL1IkXSC9R5rxO+zkdIOjnWZjxEw6g5vi1iQhBP2tPcRDMRxuB+5NS3GW+rD6Zv8isXtdrHjn9Sy4Zg1Nv93DwMl2M1Zq7wk81aWUNtbjqy3HU1OK3e9BncRDOhmMkY4lUVSVQF05iqJQsbSW9v2n6G/umlAkiUwK4mEUoOXNTgbbDuLzKDSsKEXVVOLhFMdeawflFA6vA3tZAFdVKZ6qEnz1lROKSSOTJbTXDKAPrF81YWC2oihodYswXG6MzhZENITedBRtYeNY8/gsYq8qR3XYMVJp0r0DM25NGhJJmtsDbi/EIxALoZTVUHrjNWT6B7GVl07aijbkbtMn4W6bbGYbjG7bILJZKZIks4pRcIXZzZcm52jLveb3o3l9ZFpb0IODGMnkhA2az0UkE2ZYgapN4G6TImm+IkXSBWDoBmee2QdAU+8A2Xzl4fEKSra8cZpXfvockd5QYZqqqSy5upHVN69nwSwEVRfDXVXCug/fQailm47XjtB/vJVY9+CozDhFVbB5XThKvDj8HhwlHpwBL/aAB2eJB7vPjWrRGGwzhaG/tqzgWitbXE3P0Wa0RBi9swUjl6Efg2wyZZb/FwI9ayBUBZfPQXQgTqKtm4ZFAQKVZi2S/s4wJ1/vwOHQqKhwoKoGerif7lNtJBJZUMBTXUZgcTXlKxcSWFg1bLoGQm8eQ0+msfg8+K6aXIFItaQCxeEyrVjpFHrzcbSlqyeVOTcTKKqCs66KeFMbyY7umRdJEVMkWbwe03IXj0DMbHqraBr2qqntT5uCJUmPm+UaNNf5XceKoqBYrYhsFiObnZSwkkimy1CNpCHRr3qG6yEpdgdqXthoJaXowUGyPd3YFy0+/3aFQO/vQe/qLGz33Pu7dLfNf6RIugD6j7aQGoyQyeVoC4XxBryEB8JF+7ft/tWr7Hl0BwAWu5XS2jISkQSxgQindx/n9O7jBGpKWfuWTay47irsrlmqlTOCwKJqAouqySZS9B9vI9zWY9Zg6g0idIN0OE46HCdcbGXFtEzphsDjsuK0qZx5di+azYJPTXLXBzegaqYLSwDG8GooCqg2FS1fIsHlttK41bQ4CcAIVFG6eC2bVgww8PKe/FuYigZU1XgIxnRCPRFiXQPEugbo2HkEq9tB+coGKlYvwlPuI3rMbPNRunXdlCwRitONtnQ1+hmzSa7RfgZ18YqLFqPkXFBdEEklW9bO6LaHqmpb/F6zHpWimi7NdAIc47cgGQ/VYX5+RjqDEGLCc6Tn2zxo7sntR7FaTEEt45Iks0zBkpQX44qmYV+2nExrC/ZlywrLWSoq0IOD6KHQ5LY70EfuzKnC32pZkZeQQgkAGbg9X5EiaZoIIWjL10Nq7gviLQ8Uelida0k6+My+gkBaf8dmtt1zA1a7DYtFJR2KsvNXOzn26mFCXYO88pNn2fHQ8yxcVU9dlQ9HmR9HfTVWmw2L3YLFZjV/7BacHteMpIpbXQ5qNjVSs8mszyMMQSaeJBWMkgrFRv8Eo6TCMYysTjpiWgccNgvZwQhtrxxk1fYGymrN+kjRwQShnhjJWIZsOkc2rYPFiqcqQO3yMnyKgkBBONxmlWyXG620EsVmR+gGfQeOghC4l9RTdt3V9O/YR+JMO+VlTlbccwvR3jCDpzvpP95GNp6ia99JuvadpLrWi8tpQfV5sVaUTvl8KFYb2qJG9FNHEPHIRS0P4KytBEUhG46SjcaxeqcuXoohcjlyEbOJrbUkYN6c3X7TkhQNTk8k2Ue3JlEmKBswZElS3ZNLQjCDt5OyVpJk1hlqbKuOcIXZ6huw1TeMWk7zm3GReiR83pcCAL3fjNVEVdHKq9DKi/RdlMUk5z1SJE2TUEu3WcNIVWjuH2TJ+uVEQ+ZDaKRI6j7dyas/fQ6Abe+9gc2/s33UdqoXV3PLx+5k2z03cmLHEQ49tx8lFmeRC7R4DOIxTu0+yomWQc5Fs2r4KgKU1JRRvayWmhX1VCysQrvAFiiKqmD3urB7Xfgbxl7YQgiy8RTJUJRXHnwMcjpLtq+mpsaG16NiGIIT+87SfryX2vVLqb16JeULyjGcdiwuJ+g5aDtmNlKtqsfiGRs0HjvVTC4SQ3XYC0HM5ddtMgPjB0KE9x6i+q6bqFq3FEM3CLV003e0mejpdlxOC0IIWg930HTwp5QuraNi9SLKVjZgc0/OdaPYnajVC8z+bj0dZjXvixAbo9pt2CvLSPf0k+zoxrpq6YxsNxuKgBD5FOf8OfAETJEUD0N53ZT7wimalrf45DBS47cmEUKgx/LxUBM0zR2JarWiIwtKSmafoRIWin1i673qcpvXiK4j0umxQdgjEEJgxMzngW31OlT3OBXppbtt3iNF0jRpf9W0Iul+N5mcjr/UV2h0m86LpGw6y7PffgIhBMuvXc3V77i26LbSgxGiTR0sWlLJkpXvoOPJV0A3yCoqFkOnvtpPTGiEoylymRy5TJZcJoee1QmeHSB4doAz+04C4LDb8JR5abxxLfVrFlNaW0bra0do2XEYPZNj0XVXsfTWjeO+BWVSGfRMDoHA7nIUFVyKomDzOEnFUiTjaTSrhRU3r0J0mmnkliUryBxLEE92onld1F7dSEmJm2AwTi5nQKjXvCnYHOAOjNm+EILIUdNd5l+/EjWfKahoGhU3b6Pr8efJ9AcJ7j1E6bb1qJpK6dJaAg2VdP13jFw0jnB7sPgMsgMRBk62M3CyvVCBfMG1ayhdVnf+LKuyShjohUwKMdiLUjG9QnJTxbmginRPP6nOHnwzJZKGerKVjGhc6/Kab7J6zuyb5zp/a5FzUe129GxuwtYkejRmdkHXNDTP5PpfDddKku42yewyXCPpPPW7VNWsoZRIYCTiEy4vUknzulJUFOf4LwYyJmn+I0XSNIj3BvMPXYg7zJu52+fGGzfTPEN9IQD2P7GLcE8Qd4mHmz58u/lwMgyUVBTScUQuzWB7Fi2XI+DTyUS6ifdFsbtsaH4/dW+7nt6X9xM+3szmbctY8PYbC2MwdIPoQIRIb5D+tl7Onuyg+3g7miFIDkTZ9V8v8bryElUlHmwjstROPL2beDhG+epFRPvDRPrCRHpDhHuDhHtCJKOju1/b3Q4C1aWU1pVRWldOaV05ZQsqcAU8DLR0AVC1vAbR1Qbk6xl5AwTqys1z0TkwanvkssNp/6U1Ra0XyY5ucpEYitWKZ9nCUfMsXjdlN2ym77nXiB5rwuJ24V2zDAxB/8t7yEXjaG4n9b9zC4tsVhK9IfqOtdB3tJVY10ChAnlgcQ2Nd1+Lu3L80geKoqJW1GB0NmP0d5sVvtWZTcsvhrO2itC+I6S6+2YsBT7dY5r+bZXlwxMVxbQmRQZMi9J0RJLDjh6Lo4+TrACQ6TGD+62lky+EKluTSC4WQ+UpJpPJqrrceZGUgNLxM2ZF3oqkeDwT3zNkTNK8R4qkadC+4zAA5SsX0tllPnzcPjcOt4ODOw+x5/m9bLpxA288tRuA6z/4FuxOG0q0DyUeQhGj3xo0i4Zm0bC5bHiqvFRdBYZmg3SU0o2NhI83E2/vIRtLYPWYMR2qpuKvDOCvDFB/1WI2vm0bT/3zz+g5ZWZSVNaUYstkUVUFwxAE4ylURaHE46B95xFee3wXuiHOe6zpeIqeprP0NJ0dNd3hdeL3mGmwy1eXmBVjHS7UyloA/AWRNLqtCoNdZiC23TXuQ3ko6NrbuAi1SDFKV30N/o2rCB84RnDvIRJtZ9FTaVNYaSrlN25BzTerdVeV4K4qYdHNG0kMROh8/Shn9x4n1NzF3m88RuM7thdisYqhBMqgpwNyWUR4EKWkfNxlZwprqb9QCiDVO4Cz5sLioUQuR6bPdNfaq88JHi2IpDCUG8Pm/0lyvlpJRiZL6kyLue+62klvV5GtSSQXAZHLQc60Vk4mi7JQaDIRn3A5I26KpHHdbIUNSkvSfEeKpCmSjsTpfvM0AA3Xr+W17/43AG6vi1VbVvH8L1/gbPNZfvvtX5PL5KhZXseytQtQ+5tRdPNiFJoV4fAyeLSN0Ml2LB4ndXduRxVZlHQcJZNE1TMQ7sGhqNRsXkzvm21ETrVRtnFl0XHl0ln6ms0y+m67BUcuB6qCq9yPfUEFSk+QWH+ETDqDTVWoKPdhqQjgLfObYquqxPypDGB12EBAOpEiHowxeLaf4NkBBjv7GezoI9QdJBVN4jJgyapKSksd5LI6j/7kVQL1p1m8cRkL1iwCIBWOk44locSNSMbMIGGA8tqiVqRMKELqrJkRd/J0D7E327HarfirSqi/ahGltaZI8a9biaJqhA4cJd1rWqtUu43yGzbjqCouZFxlPpa/7RoWXLuGk4/vZPBUB8d/9QqJgQhLbru6qJVDUVXUsiqMng6MgR7UiyCSFGW4FECqs/eCRVKmfxAMA9XpQPOe4+5yuMFiNS18iYgpmqaAdp7WJKnWVkQ2i+b1YJuOSJKWJMksMpTZhsUyqXYjwyIpWXS+kYhjxCIYUTOTVHVP7F4uWIl1fVLB4JKLjxRJU6R95xGEbuBvqMLfUEU8755y+934Snxcc8c2dv73DnqOd6AocNdHtqMFTeuO0CwY3kpweAgePk3vgSZQFOruurHwxiE8pQhDR0mEURIhFD1LyQIf/upVRLojpp+7SCXo3qazGDkdl92CK+8CXHrLRhrv3Iw6wl3Td6Kd3d95Ao/dylv+5L1YxqsMroDD48ThcVJWP9r6kMtk6TzcwpsPP8/aa80MkDf2dTDQHWagO0zTnhNYHTbKvS70dJZgex9VC8rQezrMDXhLx2RTCSHoPN7GwI79BCzQ0xdj7+FTnEvV0lo2/852Fm1Yin9tI65FdaQ6ukHTcC2sRbOfv6aRs8TLug/dQcuLB2h54QBtL78JhsGSO7YUblJCCJqOnsFf6qe8ogJ6OyEZRyRiKK7JxdVcCI7aSrMUQGcPJZuvuqBtZXpNa569qmLsTXjI5RbqM9uUTFEknc+SlOkyhbtjyeIpPQCGLIiyBIBkNimW2TYRSr7QpJFMjJkn9ByZowfNe/TQ8p7zWJJG3ssNw+wTJ5lXSJE0BbKJNGf3HAOg4cZ1AMQjptnV5XVz4IX96Kks5S4PmkXlPZ++GY81iwCEqwThLUcoCgN7jjCw7ygAC2+5GldNuRnQPISqmWLJXWLGL0X6US0QWOBH9DYhXH6EuxQsw4Kg+0QHVk0tCKQ0Civftm3MMZQvX4Cr1EdiMEL3wTMs2LxiyufBYrOS6A+x8cZF2OwWcLrY+vH3suS2HpoPnObUrmOEe4LEFQWH1cIL33kKERukwmfWO6J0uKx/pD/MydeOcvyVQ8QHwty2fTGgMpCGtW/ZhKvEQzaZoa+1m85jbfQ0neWJf/0FizYs44YP34av3D+tDDBFVVh86yasLgennniNtlcPYfU4abhuLUII/uMfvseel/ahaSqf/fv7WFVViggNYAz2ol0EkeSsNa1H2WAYPZFCc02/oGImb2kbFY80Ek+JKZIS44vw8ZhIJAldN4O2AWv51BoHyya3kotBIR5pkgVLVZcZYiBSKYRhjIo3MoKDowWS04XqOE9l7pHubT0nRdI8RIqkKdDx+lH0TA53VSlljfUAxKOmSBo8289/f+MxbJpGdamfd3zkGmoW+BAoGIEacJpvFP27DjJ44DgA5VevYsF16wiFxr6VAKAoCKcPHF56Xn0db4kNV5kbJRFGJMIIhxfhCiCsDtoOnMLjtKIAyUyOWDJLLpvDck5Mj6Iq1G9dyYmnd9O++/i0RJIwDIy+HmrWVSIEWOqWoGgqlYtrqFxcw9Z3X0/nsTb2//wl0v0RFD2L354FLOx9tZnuvhOAINwTIjSiyveyxWVYNBXF7eKuL757jOUhHorxxtN7OPjbvbS8cZquk+285VN3s3jjMqbLgmtWY+g6TU/vpuk3u3GW+jjT1cuel8xK6rpu8OOv/Cdf+sZfQGgAERpAVDdMqxP4VNCcDmxlATIDIZJne8YEsE8WI5slGwwBYBuvNYvNYf5kUhAdhMDk3XtD5QT05Fj3Qy5ilh1Q7LYpV82W7jbJxaBgSZrk91Ox2kwho+sYyeSo4qhGzHSxYbWhuj1Y6urPvz1FAYsFcjlELodim/0iwpKpMfupOpcJuXSWjteOALDwxnUoioKe00nFzYvs0CsHAaitKuF9n7mR2sVlZHMGGV81nR1hooMR0gOhgkCquvFqqravn5wLQlGwVlbT8sppOg6cRVdsKICaiqINtsPZk6zdUkfDqmrcpW4ywtxmrD9SdHMLNq8ARWGwuYvYiBYpk6Xv4HGWX2W64JSqBQUT9PBwFRasXsjm99wAwPVvX4PNbqGrPcjrzx6j9c0mWt88YwokBepWNXDrx9/KmqvMqtsl6xqLnhd3wMN177+F33vgY1QuqSGdSPPkV37J64+8UijkOR3qt19F7ZaVIODoz1/kpZ+bda3e9vt34vV7GOwd5I0Dp8HhAiEQwb5p72sqOPLWpOTZ3mlvI9NnWpE0jxttvH5TigL+vJUpPGAG1k8SS744pB5LjPkMckGzVrvF759yrMWwSJLuNsnsYUxVJI3o7WYkRr/cDtVFsi5cjG3FGlSPb3LbHLLc6jLDbT4iLUmTpHP3MXLJNM5SLxVrzL49iXw8kqIotBxtZdHCCn7/D2/C43MSGozx/IunaTv4JPGwaW26ZtNiarx27LWVBNZMzUXkWVyHYtGItPYRae3D4XdSsqQc/4ISLJpC4+bh6rDpZJZgbxRbagAlBmgWhGY13SiqBYffTeWqBnqPttK++xir7i5ev6kYejiInwiqqhKOC0orx68dFKgrZ8HycqobAqAolG3YwNv/tJ54KIqiqrgDHgIlbuJnOkm0tKKLHELAwLE2DMWCb9mCoumzpbXlvOeLH2Tnwy9w8Jl97H1sJ7HBKDd/9M5pFdJUFIXlb7+WZDBK8HQnq71++nwe7vzdOwB48qHf8Ppze9j0P96D0dmCMdiLUl4960GWzrpqIodOkursGWPanyzndbUN4QnAwFnIZSARBffkbvBaXiSJXA6RyYwqyJcL50VSwD/lcQ/HJElLkmT2mKq7DUyXmxGLmo1r8wjDQOQz3pTzZbSdS97FJnT5QjAfkSJpEmTiSVpfegOAhTeZPckAYkPxSE4HS5ZW8sFP3YzdYaX3bIjvfO23iLQAAXannWw6Q6nDvBhe+M0+FgRT3HHvHZMeg2azUr7lKvpee9McU0qn60A7Z9/ooD+To35pBeULS/GWubE7rVQvLAUMiI62eggA1cLG25bSt8hNJpVERAfyZmQrqBazwGARASDiUfSWU2iaSnd7mKpbbpxQKDh9DjbekneFuUpwlZeyKBAAINUfomfXIVqfNesreXx2sKikU1nSZzqJnOnEUR6g7i1bcNeNdf9oFo0bPnQbpXXlvPTD33L8lUMkwnHu/KN3YnNMvSGtqqms+d1beOaBH+K227h9wxocdhtbbrqaJx/6DUf2HSNjd2NRNcikEbEIinfqD/+pYK8sRbXbMNIZUt19OGuLtDU4D0NB2+O62oZQNfCWQbgPQj1meYZJiEBF01CdDoxkilwsgW2kSAoNiaTAlMc9XAIgJ7N+JLPGkNA5b+zQCNQiwdsiETctsBbLpOotjUSxWMz7ck6KpPmIFEmToOX5A+jpLJ6aMqo3DHeUT+TjkTZtXcp7fm8bmkWjq22QF3++lzVV5cRSGYwSP/d84QOET7YyuOMAGV3QMxin5+nd9LZ08/G/vxcUDWGI8/ZhK1nfiL08gMjmcC+s4dQPH4dUmuxAgsPtp7nq3TfgXr2cI0/vYqCpneVbl1HbWGOWHjCyoOdQAIwcdgssWJl/6MZG1zISKKbVSbMiNFM0CV1H9PdgcVgY6IlCZS1WuwWEAShjH6hCoPR14HBZCQ/EyaW8VNYJ4mf76Nt7jMjp9sKizuoStEyKnCF4sbULDworykqgP0TTfz1D5TVrqbrmqqKWlDW3bMAV8PDbrz9G28EzPPZPD3P3n92D0zu5HmEj6Trby7OHjnHnmpXYgBOP72DFO6+nsraC3rN9HNp7nE3LyxEDPYjBHphlkaSoKq6FtcROtpBo6ZyySDLSGXJh0+Vqq5hE6YJABUT6IZWYUgVuze3CSKbMJrZlZnFOI5vFyDe1nY4laUgkgelyU8bLwpRIponZQNm0VA6l9k+GYmUAhlxtqts7dUGfd7dJS9L8RIqk8xBq7aZzjxlHtOyubaOETDwS567fuZq73nE1AKcPdtK+u5WFpaarosLvQnPYSHYPkG43q1NXb1nNe6/dwK8ffJT242088IF/wO60k4gm8JX5ueF9N3NVPubpXBRFwb3AfFDmsjl6eiJU+u14PTaE3UH91pVmM0WXmzOHzpJVndRsu5pCpIgQYOTMLAo9x8CxZqJdvXjLvVQsqQIjh2LoKAjQs6BnGTkKLV88stqXD1bsMetFCXNwZld5FFAA3TD35bDh9IOixkgffxOrblC73EfNstUkU1nauvrxOuzYhJPXDzVxpKmFgYEIz2kW3nLVctbW19K76xCRlrMsfseNWIuIn8Ubl/HOL/w+v/6/P6f3TBePfOmnvONzv4uvfGoP59/87FmiqTR9Lgt1WYXu/adwlQfYdMNGnv6v37Lv5f1s3vYh9IEeRCSEyKRnPdDStWhBQSSVbF2HOoWA8aF4JIvPi+aYxDgtVvCVmRXRB7vA6ZmUNcni9ZDtHyQXiRWm5fLB4qrLOW5Pt4lQVBXFoiFyOiKTBimSJDPMUEyRYrdPKRFjOCYpXrByDhWPPG/KfxFkksL8RoqkCcilMhz7xUsgBNUbllGyeET8jWFQX6KwMS+Q9r98iv4j3XgcVpKZHG19YWpK3PiAEw8/g99vmmD9KxdR4ffykS99gsf+7Zf0tvaQyJoXa6Q/zBPfeIxg9yA3/t4tE47t2HMH6O+NUOmvwO2yUXf9ZtR8PI4nLw5i/eHRKymK6VLTzIvSt2oFex/dSy6ZYe37biLcHaLrcDOK0PGWuSldUErV4gq8Dh1VVchmdVIpHV9lAAWjUDlcAVOAiXMCD/OWH6evuPnZBZTVDAuZu9fUcvf7b0AIQSpj0N0TpL+jn0q7Ez2Rpe3x56i+biPuBdXmtpVhy1L10lq2f/x2Xvz2k4S6Bvnen/876hIf7/34eygrL8XusI8SnkII9u9+kwN73wQhWNjQwO4X9gBww/tvR+2LcPqp1znz2z2suHY1TwMHXz9MSgeb24uIRzEG+9CqF0z4OV0ojuoKLB4XuViCRHMHnuWLJr3upF1tIwlUmhlu6aQplgIV513FEjBfCoYCtQFyg/lecaWlk9/3OahOF3o0ih5PTLrnm0QyWfS8pVN1Ta7p8hCqx3x5EJmMmR3ncGCEQ/l5k4vlG0nhRStTvNaYZG6ZMZHU3NzMAw88wL59+3A6nbz97W/nc5/7HI5JBMT96le/4lvf+hadnZ0sXLiQP/qjP+Kuu+6aqaFNCyOnc+TnL5AKxXAEPCx/+4jg5kwCNdRNecCGnjN4/ldvkDwbptznJGcIxNIFnD7UzKmuft5y/VoCmGJCWCwk+iMomoXSmjI++S+fJhdPEByIYbHbOPjiG7z6i5fY+atX8JX52HDb1UXHlowkOPLUbtwWlWxWx2rV8HiHLQXeClN4RPvDE8ZzWJ12lt68gRNP7ebQL18mmcgWrE6h7jB9zX1UlWgYPjvBgQT7X+tk+yffgR5wk40lyERiJDr7iHf0kBkMoWoqVreN+o11WOwWov1xDu06jcvqIJczOHi2k55IFF0IrFaN9asWcc3KhVgdVhy15VjsGoqeQ1HAaddY3FDO4oZz3URx6DXblggUUDWyOZ22ti4GOnpYsr0Sv+LGyAhi0SS//veHCYZjqFYrN959E1vfspVjh0/xrX/7HkcOmjWvVEWl1leFTbOy+aarWbi8AZZDJpqg7dVD9O06yuYVS9l7ook3XjvIti3LEfEoYrAXUVE9nJ0yCyiqgmfFEkL7DhM5chr30oXndcuCKQLT3fl+bVXnFzoFLFYoq4W+DhjsNq1J9onjNawlAQCywVDh+5bpMwWapXT83njnQ3PnRVJinBIZEskFYERMUa95p2b9UTQN1evDiITRQ0Fz/WwGVA3VNw0XfN7SKjLj9z+UzB0zcnePRCLce++91NbW8tWvfpXBwUH+8R//kVAoxL/8y79MuO7TTz/NF77wBT71qU9x3XXX8eyzz/Knf/qneL1err/++pkY3pTRszmO/fJlBk92oFo1Vv/uLVgcNjOmJzZgVsIGYpEUT/10N0YkRX2lD0MIKm9Yj3dhNS88+gqKovLCziO854bVACTCCU7817PmThQFq9uB0+dGddqxuBzUB1zceNtG3thxhN9+/ykqGiqpaxyutSEMQbC1m/0/exGPVTUfRoqGFYg2teNdYlo1PKVeUMyyBaloEqevuL9dCMGCTctpem4/Qtdxu20svv4qSuor0JMp/FoMu0MjFc/Q1RRm4YISWn/xDLlEquj2EprBmqtrsVg12tv6+F//+DMSyTS3N67B53DSEhygOxGhv3+A2hI/71zdSLi5n1ePNfFfr+zNnxaF0hIvNdWlVFeVUFtTxqJFNVSW+ynzuXG57Gg2DUVRTLegkcOmwrJF1SxbVF10XKPobWJlQOfvP/e7JBJpBCrRcIJEPEU8kULXIDvYg9XlYskta8HQadt5lMZAAGVRA7ueeZ1r3rKlUFfI6O5Aq1s0qe/VdPE0LiJy6ATZUIR4U+ukrEl6LI4eT4Cqnj+z7Vy8pWb17WQMupuhbrkpns7ByGZJHD9JbjCIZtPQM2YMlMhm0MNhUBRsVdNvqVKI/YhLkSSZefS8SJqOsLGUlpKJhMl2d5nXCaCWlE4rA1Wxmi+4QlqS5iUzIpIefvhhIpEIjz76KKV587qmaXzuc5/jM5/5DEuXjp/u/m//9m+89a1v5c///M8BuOaaa2hubuarX/3qnIik6Nl+jj3yCvGeQRRN5arffwv+ah9KuMdsFZK3tZw+1sOzD+/BZdVYWhsAIO5ycu1NGwFYsKKejhPtNFQGcNgspLM5QqiUBpykQzEQgmwsSTY2ugifBly9vIZsTmff95/AuOcWrHYbvcfbOPvGafS06bdWFAV/fSXL37Wds79+mVjLWXKJFBaXA81qwV3iJT4YZbC5i0C5l3QoRiYUJROKFn7X0+abS03ZsKUgc7KZ0NlO6tfXYnNYyaZytO/vxEjlGCmNdCEIJRJ0BcOc7OqlalE5H37/zXg8Drq6g/zzg49TUV/Ftbdupcqw07HrBG+9cTvXfvJtRE62EHz9DRRD0B1P8JuDJwrbFUIwMBhhYDDC4aMto86NqqhsWtTA29avxum0Y2gKh7u7aA4OUFZVxrbtGygt9ZOOJ4j0DVLq8+DzubA7rNicVuwOK6qqYLNZKbVZKRg56s5xR6VD5g/QuKGUJWuuI9wVYvlggv6eMM2v7mfRuqUYbacQg70YTjdUTj3zbLJodhv+dSsJ7j3E4O6D2CtKsQYmNusnW80WMLaKsinFMQGmW7ZqIXSehmwaOk5B9UIYEW8hdJ3onn0Ft5qqKSiqRmTX7kKWjn1BHap9+jFbmsd0g+Si0WlvQyIphpFOFRILNP/URZK1ppZMawt6OISayYt4q51ccBAtUDKl4O2h8gMilZx2qQ/J7KGIC6nCl+dDH/oQXq+Xb3zjG4VpmUyGq6++mj/90z/l4x//eNH12tvbue2223jwwQe5/fbbC9N/9atf8Vd/9Vfs3LmzILqmiq4bDA5O3KkZwNANkgNhwm099B1tIdbZh8Njw18ToGHrchwOUPThgLrB/gQvPXqAzqZ+KgJO6iq8qIpCdyTJW77wITwBM3aio6mDH/7Nt3jbtpW47FbebOrmcHMvd977VirqynFaLCTae+l+8zTZRBpVUVBU0FQVq0VFHeFSyeUM0lmdTFY3C1RmdcpX1HPDH95NLpmm89cvkwlGsFeUYC0rIRuJE2zuglwWbbIXnKZid1nx13gpqw+gqArpeIamN7qJZ3SCySTH2to52dxGKJEkZwhqq0rZuHYJt1x/FYsXmhaDts5BBi1+1l+7sXCjiPUGefbLD+H32lm6dgEiZn4ujtpKKm7ehmK1kE6lyWVzoCioqoqmqaiqSigYpr25g+bTrZw52cKxQyewJHO88+p11OczqTK5HMfO9tLU009fJE46o5vFPg0dh9XK0tIqHBYbKKBaFDKqjm4RqFYVX5mXleuWseHaq0jG47z6/KsEvC4WLayhfkEVVm38m52eNUDoiJwBTjf+BQuIGxZ0oYyKl5oJhGHQ85tXSPcMoNptlGxdh6uhtlBPaNS4kkn6f/MSIpvFf80mnPV109tpNg1dzeb/gOLx462tIZZRCO07SLa3D8ViwbVqBckzLYWHDoCttgbP+rXDDTyngR6LEXrxFVBVSm6/FdU6+8HbFotKSYmbYDA+ulXQZcSVcIww8XGmm8+QaWlG8/txbdo8re2nzjRhdHegaiqGbqCnzZcD1e3BtmgxlooivRKLIIQgvW8X6Dlsq9ejen1UVEw9AFwyO8yISLr22mt573vfy+c+97lR09/+9rezYcMGvvSlLxVd76WXXuJTn/oUTz755Chr08GDB3nf+97HT3/6UzZvnt4XWAiBYZxzaEYOBAjdAM6ZpygTfKEF2axOLp0DQ5jLAkOpX7ousLkdKIaRD2AGgTAbFgKGEOR0gciPR1FAGZk3pipYnXYsNgvCEOjZHEYmO6Ly8blNScdMKSQhicI/Q+dhaIJpAzNjRsBis5jjMP8x5444fj2nk0npIAQ2pxVFHX3M5t8jAqERGLowzw+MLtosjNFjwownsnmcE2ZPhUMRclmzTo4QAj3fKds8ZSp2qxW7RRsjBM3lzTENjWNoNyM/h+FTJUZ/G4bWBXRhYLFoWK0aVqsFLS/gzn/zO2fHYz6x6SGGvmMjKXyG5rGPPOhpvZXmz3dh84V/xsP8Qgpj9L6BC34rFsbQtTrBsSiY9b1mAEUBVVUxDGMqhccvKa6EY4TixymyWfM7lb83KzbblIW80HNmdez8vR7y31BFQZxzrytcm4piZrGNc98Q2ay5TQWwWLBMIyNUMjvMWEySzzfW/O/z+QiHw0XWMBmad+66/rz5c6J1z4eiKGjnWgG06X/xNDtwkRJsrHYrMPniZrOBBbDP8ctMaVlgbgcguWJRrwCXx5VwjHDOcWozULLjAp4j429T9mybr8zqVTLZSrnnLjP0Fiur7EokEolEIpkrZkQk+Xw+IpGxzVSj0WhRC9MQ41mMhrY10boSiUQikUgks8mMiKSlS5fS1NQ0alomk6GtrW3CzLYlS5YAcObMmVHTm5qaUBSlMF8ikUgkEonkYjMjIunGG29k165dBIPBwrRnnnmGTCbDTTfdNO569fX1LFmyhCeffHLU9F//+tesW7du2pltEolEIpFIJBfKjIik97///Xi9Xu677z5eeeUVHn30Uf7+7/+ed7zjHaMsSX/913/N6tWrR637x3/8xzz11FP867/+K6+//jr/8A//wI4dO/jjP/7jmRiaRCKRSCQSybSYkew2n8/HD3/4Qx544AHuv/9+HA4Hd99995iSAIZhoOuj+3vdddddpFIpvvnNb/Ld736XhQsX8q//+q9zVm1bIpFIJBKJBGaoTpJEIpFIJBLJ5caVUShDIpFIJBKJZIpIkSSRSCQSiURSBCmSJBKJRCKRSIogRZJEIpFIJBJJEaRIkkgkEolEIimCFEkSiUQikUgkRZAiSSKRSCQSiaQIM1JMcj6i6waDg/G5HsaEqKpCaambwcE4hnH5lqu6Eo5THuPlgTzGy4dL+TgrKrzTXlcIMS+Peb59HpM9x9KSNIeoqoKiKKiqMtdDmVWuhOOUx3h5II/x8uFKOc5zma/HfKl+HlIkSSQSiUQikRRBiiSJRCKRSCSSIkiRJJFIJBKJRFIEKZIkEolEIpFIiiBFkkQikUgkEkkRLtsSABKJRCKZGwzDQNdzczwGhVRKI5NJo+tzn3IOoGkWVFXaJi4lpEiSSCQSyYwghCASGSSZjM31UADo71cxDGOuhzEKp9ODz1eKolxaqfBXKlIkSSQSiWRGGBJIHk8JNpt9zoWApinzxookhCCTSROLBQHw+8vmeESSySBFkkQikUguGMPQCwLJ4/HN9XAAsFhUcrn5Y0my2ewAxGJBvN6SWXG9Gbo+49
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

adding descriptive stats here may help defend why intersection_union_mapper yielded best results - can talk through the clusters and their intuitive meanings

},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAKmCAYAAABZkgpjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9Z3gc532vfc/M9o7eCLCDTaxikaguq1i2HDc5cdzkEju2YuWkOLET57wnOZET5yTnxLEVt7iXSHGRpcgqtnohRbFK7A1EJzq295153g+zWADEAgRAgADJ574ukMDUZ2Z3Zn7zr4oQQiCRSCQSiUQiGYU61wOQSCQSiUQimY9IkSSRSCQSiURSBCmSJBKJRCKRSIogRZJEIpFIJBJJEaRIkkgkEolEIimCFEkSiUQikUgkRZAiSSKRSCQSiaQIUiRJJBKJRCKRFEGKJIlEIpFIJJIiSJEkkVwhfOELX2DFihV0dHTMyf4feeQRVqxYwSOPPDIn+5dIJJKpIkWSRDILrFixghUrVrBq1So6OzvHXe5tb3tbYdmdO3de0D6/9rWvsWLFCl5//fUL2o5k6nz4wx9mxYoVcz2MosznsUkk8x0pkiSSWcJisWAYxriWk3379tHU1ITFYrnII5NIJBLJZJAiSSKZJcrKylizZg2PPPIIhmGMmf+LX/wCq9XK9u3b52B0EolEIjkf8hVWIplF7rnnHv7u7/6OHTt2cMMNNxSmx2Ixnn76aW699VZcLte463d3d/Ptb3+bl156iZ6eHtxuNxs3buS+++5j3bp1heVuvfXWglvvIx/5yKhtnDhxYsx2H374YX7605/S0tKC1+vl1ltv5S//8i/x+Xxjlj106BDf+ta32LdvH9FolIqKCm688Ubuu+8+qqqqxizf2trK//2//5fXXnuNbDbLypUr+cM//MPzn6wpEgqF+P73v89zzz1He3s7FouFurq6wthGntfm5ma+/vWv89prrxEKhQgEAlx77bXcd999LF68eNR2v/a1r/Hggw/yox/9iGAwyHe+8x1OnTqF3W5n+/btfOELX6C6uhqAjo4O3vKWtxTWHenW2rp1Kz/+8Y8B8/MBeOyxx/i3f/s3nnvuOXp7e/n0pz/N/fffT09PDz//+c959dVXaW9vJxwOEwgE2Lp1K5/5zGdYvnz5mON/5pln+NGPfsSZM2cIh8P4/X4aGhq4++67+eAHPzjpsUkkkvGRIkkimUXe8Y538H/+z//h5z//+SiR9Pjjj5NIJLjnnnt48skni6575MgRPv7xjxMOh7n++uu54447CAaDPPvss3zgAx/g3//937npppsAUxg999xz7N69m3e/+93U1dWNO6Z//ud/5tVXX+WWW27huuuu4/XXX+fnP/85LS0t/OQnPxm17LPPPsuf/MmfAHDnnXdSW1vL4cOHefjhh3nuued46KGHqK+vLyzf0tLC7/3e7xEKhbjxxhtZtWoVra2t/NEf/RE33nhj0fE88sgj/NVf/RXvfve7+fKXvzyp89re3s69995LZ2cna9as4fd///cxDIPm5mZ+8IMf8P73v78gkt58800+9rGPkUgkeMtb3sLSpUtpamri8ccf57nnnuP73/8+69evH7OP//zP/+T555/n1ltvZcuWLRw8eJCnnnqKY8eO8fjjj2Oz2fD5fHz2s5/lV7/6FZ2dnXz2s58trH/uZ5DJZLj33nsLn6fL5Soss3fvXv7jP/6Dbdu2cccdd+B0OmltbeU3v/kNzz//PA899BCrVq0aNba/+7u/o6KigltvvZWSkhIGBgY4ceIEjzzyCB/84AenNDaJRDIOQiKRzDiNjY3ihhtuEEII8Zd/+ZdizZo1YmBgoDD/3e9+t7j55puFruvi85//vGhsbBQ7duwozM9ms+K2224Ta9euFXv27Bm17e7ubnH99deL7du3i1QqVZj+1a9+VTQ2Nopdu3YVHdPQfm6++WbR2dk5al8f+MAHRGNjo3jjjTcK02OxmNi6datYtWqV2Ldv36htffOb3xSNjY3iox/96KjpH/vYx0RjY6P4wQ9+MGr6M888IxobG0VjY6P45S9/OWreL3/5S9HY2Cg+//nPFx13MX7v935PNDY2im9+85tj5g0MDBTOi67r4s477xSNjY3iiSeeGLXc448/LhobG8Udd9whdF0vTB86jxs3bhTHjx8ftc6f/dmfFd3Whz70IdHY2DjueG+55RbR2Ngo7r33XhGPx8fM7+/vF9FodMz0w4cPi/Xr14uPf/zjo6a/613vEmvWrBH9/f1Fj38qY5NIJOMjY5Ikklnmfe97H9lslsceewyAY8eOceTIEd7znvegqsUvwRdffJG2tjY+9KEPsXnz5lHzqqqq+IM/+AP6+/t57bXXpjye++67j9ra2sLfFouF97znPYDpWhvi2WefJRQK8ba3vY1NmzaN2sbHP/5x6urq2LlzZ8HN193dzY4dO1iwYAEf+tCHRi1/2223sXXr1qLjuf3223nyySf5sz/7s0mN//Dhwxw4cIBVq1bxyU9+csz80tJS7HY7APv376e5uZlNmzbxtre9bdRyd999Nxs3bqSlpYV9+/aN2c5HPvKRMVlh73vf+4DR52kqfP7zny/qXi0rK8Pj8YyZvmbNGq655hp2795NNpstTFcUBYvFUjTov7S0dFpjk0gkY5HuNolkltm8eTOLFy/mF7/4BR/72Mf42c9+hqqqvPe97x13nTfeeAOAzs5Ovva1r42Z39LSAsCZM2e4+eabpzSetWvXjplWU1MDQDgcLkw7duwYANu2bRuzvNVqZcuWLXR2dnLs2DHq6uo4evQoAFdffTWapo1ZZ+vWrezevXvMdK/Xi9frnfT433zzTQCuv/76cUXmZI4BYPv27Rw4cIAjR46wZcuWUfOuuuqqMcsXO0+TxWazsXLlynHnv/jiizz88MMcPnyYYDBILpcbNT8YDFJZWQmYbtwvf/nLvP3tb+ftb387W7ZsYdOmTVIgSSQzjBRJEslF4J577uGf//mfee211/j1r3/N9u3bR1lzziUUCgHw9NNPT7jdRCIx5bEUs1gMiZqRWXjRaBSAioqKotsZmj603ND/ZWVlRZcvLy+f8liLEYlEAIoGjZ/LZI8hFouNmVdMuBU7T5OlvLwcRVGKzvvRj37El770Jfx+P9u3b6empgan04miKDz77LMcP36cTCZTWP5jH/sYJSUl/Od//ic/+tGP+MEPfoCiKGzbto2//Mu/ZM2aNVMen0QiGYsUSRLJReDd7343X/nKV/jCF75AJBLhnnvumXD5oQf017/+9VEZSheToTH09fUVnT80fWi5of8HBgaKLt/f3z8j4xrKwOvp6TnvspM9hmLCcaYZTyDlcjm+9rWvUVFRwSOPPFKwFg0xZFU8l3e96128613vIhKJcODAAZ555hl++ctf8vGPf5ynnnpKWpUkkhlAxiRJJBeBsrIybr75Zrq7uykpKTmv8BnKttq7d++k9zHkepqOlaMYQ9lUxVxkuVyuEMezevXqUf/v27cPXdfHrFNsO9Nh6Nzs3LkTIcSEy050DCOnX6jlZejcFzvu8xEMBolEImzcuHGMQIrH4xw5cmTC9X0+HzfddBMPPPAA7373uwmFQqO+NxcyNonkSueytSTpusHgYHyuhzEhqqpQWupmcDCOYUx8s7+UuRKOs9gxGoagry9aWOaTn/wst9xyJ+Xl5YTDaSANQCplBuSGQonC8uvXb6OubgE//elPWbVqHddee/2YfR4+fJBlyxpxOBwAWCxOAE6ebGbZsrHxNEP7GRyMY7dHR80LhUy3XTyeLoxhw4Zr8Pn8PPHEE7ztbe9m3bp1hWP8yU9+RHt7O5s3b8Vq9dLXF0XT3GzZso09e17nm9/8Lr/7u79f2P4rr7xYECTRaGrUeYnFYgwM9ON2eyblkquqWsjates4dOggX/3q1/nAB0bXhQqHQzgcTux2Ow0NjTQ0LGTfvn387Ge/4pZbbiss98ILz7Jnzx7q6xtoaGikry+KqioF4TXy8xhi6J6SSmVHzXM6TUvUkSOnqakZ60bVdVO4nrs9AMOw4XA4ePPNg7S29hQCu3O5HP/8z/9AMBgs7Hvoc9u1ayebN28dE7jd1dWbH59e2Ne5Y7sSrke4tO87FRWTj9GTzC6XrUi6FFBVBUVRUFXlkruIp8KVcJyTOcba2jpqaydXn8ZisfClL/0zf/7nn+Uv/uJPWLt2HcuWrcDhcNDb282xY0c5e7aTxx57uiCSNm3ajKqqfOtbD9LUdLrgavroR/9gWsfkcrn4q7/6n/zP//kF7r//U9x6620sWtTAG2+8yeuv76KsrIy/+Iu/HrXOn/3Z5/n0pz/GV7/6f9mzZxfLljXS0dHOyy+/wHXX3cCOHa+M2c/LL7/AP/zD33HXXXfzxS/+7aTG9j//599z//1/yNe//lWef/5ZNmzYhBCCjo429ux5nZ/+9BfU1NSiKApf/OLf8ad/+kf8r//11zzzzG9YuHARbW0tvPLKS7hcbv7mb/53wdoy9DlOlauv3sILLzzLF7/4F2zbth273U51dQ1vfevbz7uuqqrcc8/7+clPfsC9976f66+/iWw2y4EDe4lEImzatJn9+0dbFP/2b/8am83OunXrqa6uRQjBwYMHOHbsKI2NK9m8eThQ/dyxOZ1Oli5dyE033X7ZXo9wZdx3JLOPFEkSyTxl2bLl/OAHD/Hwwz9l585XePLJ/0ZVVcrKymlsXMEnPvGH+P2BwvKLFi3mi1/8Wx566Cf86le/IJMxLVXTFUkAN9xwM9/4xnf50Y++z+uvv8bzzz9LaWkZ73rXe/noR/+A8vLRAdH19Q1861s/4Jvf/Bp79+7mwIF9LF26nH/8x/9LKBQsKpKGyA4MYmSyqDbrecdVW1vH9773E3760x/xyisv8sgjP8Nms1FdXcvv/d4HKSkZjsdZs+YqvvOdH/LDH36XvXt3s2PHywQCAW677U4++tFP0NCwaJpnZ5h3vONd9PR08+yzv+U///NH6LrOhg2bJiWSAP7gDz5NIBDg179+jMceewSPx8OWLVv55Cfv47vf/daY5T/96c/y+uu7OHHiBK+9tgObzU51dTWf+cz9vPvd92C1Dp/DYmPbunUrN910+wUft0RyuaOI8zn1L1EuBXebxaJSUuImGIyTy81MHMl85Eo4TnmM08dIpwk+8zwArpWNOJctnbFtTxX5OV4+XMrHKd1t8wcZuC2RSOaUXDgy/HtkbMyORCKRzBVSJEkkkjlFH1GjSC9Sr0gikUjmCimSJBLJnGKk08O/T6M4pkQikcwWUiRJJJI5RYyoJC1yOkLW85Fc5gghMOKx89b5ksw9UiRJJJI5xUhnzvk7Pc6SEsnlgX62nczhA+Q6Wud6KJLzMGMiqbm5mU984hNs2LCBa6+9lgceeIBUKnXe9Z588knuv/9+brjhBlasWMF3v/vdmRqSRCK5BBgrkjLjLCmRXB4MiSP9bPscj0RyPmZEJEUiEe69917i8Thf/epX+fznP8/jjz/O3/zN35x33aeffpr29nZuueWWmRiKRCK5xBjpbgMQ0pIkuYyRLrZLixkpJvnwww8TiUR49NFHC00VNU3jc5/7HJ/5zGdYunT8uidf+cpXCtVu/+u//msmhiORSC4RhBAF95rmcaPH4tKSJLmsEank6L8NHUXV5mg0kvMxI5akl19+mWuvvXZU1+k777wTm83GSy+9NPEAVBkWJZFcseg65Bvyavk2KkZGWpIkly/niiSy2bkZiGRSzIhCaWpqGmMtstlsNDQ00NTUNBO7kEgklyEFq5GqojrNBr0im5vDEUkks4s45yVAZnPOb2bE3RaJRPD5fGOm+3w+wuHwTOxiWlgs89tKpWnqqP8vV66E45THOD0M3XyLVu12LHabOTGXnbNrV36Olw/z9Tj17Gh3soaBNs+fVVcys9rgVggxrY7aM4GqKpSUuOdk31PF53PO9RAuClfCccpjnBrRaJggYHM7cQfcxAALYs6vXfk5Xj7Mt+Psb84x0sHmdlpxXiLPqiuRGRFJPp+PSCQyZno0Gp0waHs2MQxBJDK/q/dqmorP5yQSSaLrl1YDxqlwJRynPMbpkRwwLc2GZiGVNbN+0vEkweDcNKeWn+Plw3w9znR0dOudaDhGyuoaNW2uXxIkw8yISFq6dOmY2KNMJkNbWxvvfe97Z2IX0+JS6fys68YlM9YL4Uo4TnmMUyOXMuMzFJsVI5/hY2Syc34O5ed4+TDfjtPIf+exWiGbRc/kUObR+CSjmRFH6I033siuXbsIBoOFac888wyZTIabbrppJnYhkUguQ4YCtxWbDcVqBUDIbB/JZYowDMjHJKnOvLVIl4kK85kZEUnvf//78Xq93Hfffbzyyis8+uij/P3f/z3veMc7Rrnb/vqv/5rVq1ePWvf06dM8/fTTPP300wCcPHmSp59++rylAyQSyaXPUI0k1WZHtZkiyZAiSXKZUshsU1QUu8P83ZBWpPnMjMUk/fCHP+SBBx7g/vvvx+FwcPfdd/O5z31u1HKGYaCfk+741FNP8eCDDxb+fvTRR3n00Uepq6vj+eefn4nhSSSSecpQtW3VPmxJQtcRhoEia6hJLjfyLwCKzQb5rDshRdK8Zsay2xYvXnzevmtf/vKX+fKXvzxq2v3338/9998/U8OQSOY3Rv4lQVbYBYq728B0uSl2+1wNSyKZFQquZIsVlPxLgCHrJM1nZrUEgEQiyaPnoK8D4vm6Yb5SKK8bvlFeoRgjLUmKgmKxIHI582EiRZLkMkPk8i8FVuuwpVRakuY1V/YdWiK5GBg6dJ0ZFkgAkUHobYcruNmlEKLQzFbNC6Iha5KMS5Jclgy526zWgjVZutvmN1IkSSSzTf9ZSCfNm2LdcqhebE6PhcyfK5QhgQQUXGuK1TRuy9YkksuRUe42aUm6JJAiSSKZTZIxiA6av1cvAocL3D4oqTKnDXaDuDJvkkOZbYrdXqjMXygDkMmMu55EcqkickOWJJsUSZcIMiZJIpkmejJFcO9hkh3dIARdpT4sAT+ax40QBsLQ8boNNAXwloLTM7xyoBIiA5DLQCwM3pI5O465Yqionjoi9kgdEkk5aUmSXIaMdLcNIQO35zVSJEkk0yAXjdP91EvoiVRhWqJ7ALoHCn+7ytxoq6sxdINUSmFU4wFVBV85BLsh3H9liqSheCTHsEiSMUmSyxkx1NzWaoV8ORwZkzS/kSJJIpkiRk6n97nX0BMpLD4PpdduwO5xYc2kGWzpIhNPoqgKJRXm5RXpCBHuaKH6bW7s5SPEkK8Ugj2QTkAqYbririCMZBIA1eEoTBuuui0tSZLLj4K7zWIdztmQImleI0WSRDJFIodOkA1F0Jx2qu68HovbhcWiUlLiRqmqMPtEhfuhvxOhWcjiAEPQ//Ieat95G0q+iBwWK3gCEAtCpB8cDXN6XBcbPW42oNbcw808hwO3pSVJcnkhhBjtbhsqrCxF0rxGBm5LJFMgG4kRPnQSgJJtG7C4i1h/DN0MyAaUkipKr7sa1WEnF4kRO9Uyellfqfl/LHzhsQlCXFIlBfRoFABtxDlUZf82yeXKyG4TI7LbpLttfiNF0gzxy288wncf+N6YtiuSywchBIO73gDDwFFbiWthbfEFgz2m4LHawVeGZrcRWL8SgPDB4wh9xE3R4Qarzcxwi4WLb+98ZNLQ3QzNh8yf7hbIps+72nRI9gfpfuI5Bl/cOe24oUx3DwNP/gY9GgPAUhIozJMxSZLLlSFXG6pqFpJUZcXtSwEpkmYAIQSvPrGDw7uOcObwmbkejmSWSLR2kjrbC6pK6TUbCmnrIxGZFIT6zT/KaiC/jKdxMZrLgZ5IEW/pGF5BUczMNxguFTAVUgnoOAnxyLAlKR42pyXjU9/eBBjZHG2/eZVcJEamb4DkmbZpbSdx/GTBxWApLRmV3aZIS5LkciU3okYSyBIAlwhSJM0AmfRwTZdUcnbe4CVzi5HJEnz9IAD+tY1YfZ4xywghMHraAQEuL7h8hXmKpuJdsQSA6LEmMz5hiCGRlIqbVqHJkkmblbyFYQZ9L2iEBcvB7jJvvN3NkJ2ZekNCCEJ73iQTjhampbt7p7wdI51Gj5kWJOeK5Xg3bRw1XxaTlFyuDJW1UPIiSRnq32gYo+8HknmFFEkzQCY5/CAydPlWMOMYupkBlknPWcxNcN9h9KSZzeZfu6LoMomONkQiZlqHyusKVqQhPCsWg6qS6Q+S7hthNbJYTVEFk7cmCQG9bea5sTuhZon5v90FtUvN3w3ddL1Ns1ilEIJsOEK6p4/I/kMkWjtAUQhsXgdAdjA05Zv7UByS6nLhWr5sVPo/yJgkyWXMUNC2JZ8vpY54/EqRNG+R2W0zQDqVLvq75AIRAkJ9ZozP0IM+H+eDr2z0TWYWSbSdJXaiGc1uoXzrKhQ9Daq90HsJITCCvSR6O82/K+rNcZ6D5rDjXlpP/FQr0WNNOCrLhmd6SyERNUVSafUYgTWGyIApHBXVrOQ9NBYwz0vVItPllkmamXaByikdsxCC8O4DpNo6R02vveFqlOpqQnsPInI5jHQGzTH5RrS5iCmSLD5v0fnKiGKSQoiiLk2J5FKkUCDVeo67DUzL70W6n0mmhhRJM0B6hCUpFU9NsKRk0ggB/Z2mGABQLSB0MyB54CyEeiFQkRdL2sTbugDSvQMkjhyl9up6rC4bpAehI2/tsdrA6oBsGiMfKK2UVCAmKAzpW7mU+KlWEi2d5DYnsbid5gy3zzwOPWeKJbdv3G2Qy8Jgl/l7WTVYbGOXsdqgrBb62mGwBzwlw7EQQLK1g+jBY7gbl+BesXTscXd2FQSSxedFtdvwrlpG2VVLCQbjqC4nRiKJHotPSSQV0v49Y92VMOItG9PlptisRZeTSC41hmsk5b/jI18ADB35OJ6fyE9lBhhpPcqkZM+pGSEWHBZI5XWmGBIGREOmQMplYKALgr1mtWqb03wTE4b5VmYY+d9109pic5htQSyTf+gmWjtQ+topb6wAQJDvuWQYppjJZoZjfhQVd8NCUnY/uj6+6dxWFsBeVU66p5/YiTMENq0prI+3xLT6RAcnFkn9neYY7C6zavd4eEuGLU7BbtPChZlyHHnjCCKTIXrwKI6GWjSnc/Sxn2kFwL1qOd6rzMw8i2X4TdficZPJiyTKS8cfwzkUCkg6HUXnK5pmfo6GYT5UpEiSXC6cE7itKIr5YmToCMNA2kznJ1IkzQCZEcHaI4O4JdNE16H/rPl7aTX480JA0cBfZtYWigZNN1wuYwqLyeJwgacUvIFxLVBCCOJHjuFQk1hKXAhDIEqqUEsrh9fRc5BOmiJJ09C8PlzlftLBOKacGh/vqqWke/qJnmzBv24liiW/TW+peSzxiLl9rcjlGQ+bPwAVCyZ2yymKmWF3tgkiQbOprsVGLhwZ1UA23dWLa8nCwt9GJkOm1xSozoULim56qLaRnkhOeKznYqRMS+vIKttjhm21ItJpGZckuawYDtwecV2rqvkiJzPc5i3SCToDpEdYj9LSknThhEbUGSoWS6MoplBqWAlVC00rk9Nj1hxyesDtR7gDGBY7hi4wsvpwXGQqAf0d0HLUDHxOxkYFTRrZLPF9+3DbM1jsFvScgPpG1PKa0aJKs5jB1v4y8ARQigmacXA11KC5nRipNLHTrcMz7E7zB2GKwHMxdNOKBKar0e4cu8y5DJ0XhGl1AzL9o4PDswOj95Xp6QchsPi8WLzF3WJDAdd6amruZSOZF0nO8ceuytYkkjnASKVIHnqTbG/P7OxgREuSArIMwLxHWpJmgHRy+EEh3W0XSC47bBkaUWeoKIpitvXwBEZNFpkUevOJ0en02RwooPoDKMJAyaZNIRINmmLM5UXoOiI0gKfEvIllDQvW5StnPOZJUVV8a5YT3H2Q8KETeJYvNN1MYAq+vg7TpXhucPpAl3l+LDYoqZ78DkuqzFIB0SCUVpMNmpYoS8BPLhQmGwyNWjwzaIoma8X4bjQt7y4zplDyQuh6wTo0sSXJvC3JgpKSi0m6+Qy5/n5y/f1YysqHr8kZohC4PUIkKapq2p1lQcl5i7QkzQAjA7czMrvtwogMmpYdu2tUnaHJIlIJ9KZjpkCy2lAXLkdbsR6lvAYEGKEQwumHumWme0tRzWDwcD9KLIhmUcllcmRtAazLVs9aULh3qLhkPDm6VYm3xBRBeq7Q2gQwBc5QjFbFgqllwjg9ZkyWMCAaLFS6di4yXWm5cBQxolL8kGXJVjp+APqQJcmYgiVpyIqEphWEUDFkQUnJXKCHhi2qejg049sX55YAANma5BJAiqQZYFTgtoxJmj5CDAsBf/n50+DPXT0eNQVSLgsOJ9rS1ai+EhSbHa2mHrXaDFw2ujsQhoDKeli0GioWkNZthNuC9B7tJuutw1q/cMr7nwqKRcOXr7cUPngCI5cXKYoK5fl2J+E+MzMt1Ae97ea0kqrhmkqT3plSiOsS4X5yUbMSt62yHMVmZsbl8kUihWEULE3WsolEkmkJ0qfwUjAkqDSnY8LUfimSJBcbkc0iRgh+Iz6z1eqFEFDEksSIgpKS+YkUSTPASBebdLddAPEw6Fkz3d/jn9KqRiRoutgMHVwetCWrzEy0ESjl1Sj+UkCgtzWZ1hNVI5PV6N51glDrIPbFi3EumIIr6wLwNi5Cc7vQEymix5uGZ7j9ZswRmFlpA2cBYU4vqZrezjwBUDWUXAarw7wxWzxurAHTWpcNmcIoF4qAYaBYrWge97ib0wqWpPSkC0rqQ5ltE7jaQMYkSS4+RiIx+u8ZFknoeqHW29BLAJjuNnOHUiTNV6RImgHSSVkCACARjJJJXECdqCErki/vBpsEZiuQTozWUyAMFK8fbfGKooHUiqKg1i02awhl0xhdbRjZHH0v7QbDwFlfg2/N8umPf4oomkZg4yoAIgdPYIy0QpbWmG61oWDuslozSH261i1VK8RuOcvcqC4niqZhCZhiNBeKACPikcoCE1p7CpWyDWPSFp/JZLaBjEmSXHyM9Oj71rmi6UIRQ6VCNG10rJN0t817ZOD2DFCsTpKezZHsN9/OXRUBVMvsFTycD5w91MzO7zyJarFwy/94NyUNU6vwTCZlZpqBGbB8HoQQiGgYo7ez0MhVKSlHrVuEMoHAUjQNrX4J+pnjiGAf0fZ+cpEYmstJ2fVXX/QKz+4lDUQOnyQbihI+coqSQt0kZbiy+EyRr5vkCDhJpsxzdK4laSgeyTpBPBKY51GxWRGZLHoyjWorUtDyHAoiaZwaSYVtS3eb5CIj8vdwxeFApFKFel5C18n2dKP5/Wju4pmek9p+vuTGudbt4ew2Gbg9X5EiaQYY2bstl8lw+undnN1zHD1j3uQ1m4WSpXUsuHYNgUXV034Q65kcoZYuomcHiPcMkgrHySXT6JkcqkVDs1lwBDy4yv14a8spWVqL1TXxA2mmOPzrXQhDoGeyHHxsJzfd/66pbWDIiuTymZaecRBCIMKDGH1dZjo/gKqh1i5ECZRN6twqbh9KeTWivxunPUfUqlJ+0xY0+/kf9DONoioENq6m74XXiR49jW/1silVsJ4Sdhe6AZqq4iwx6xwVLEnhqNmrbTAEgG2CeKQhVLsdPZPFSKeB88dJFdL/z2tJku42ycVlyJJkKSkh29WFyKQRuk769CmyZztRrFbc12wfHXQ9FbLFRZIiY5LmPVIkzQBDliSbRWNNoIT2HYcAsDjzQbHJDP3HWuk/1oq3rpyG69dRvmohWM7vUkpH4gycaKf/eBvBM2eHA3zHIdY9ogaOolC6rI7aLSspX9GAos6OlSQViRM+O1D4u/dkB/HBCO7SSWanGfpwY1d/ccuJMAxEqN8UR0Op/aqKUlqJWl499g2t2DaEIDsYJtnVS7K9G3+pitVlo2L9QuyVM2ixmSLOhlpspX4yg2Fip1rxr22cnR0pCplYDqfPgs1hfvcsXjeoKiKXIxcMmxW0AWtp4Lyb0xx29GgMY5LB25N2t+UfRNKSJLlYiLxIUj1esPRBLoeRTJDrM2uLiWyWXH8f1uqa6W1/yN12rsVVutvmPVIkzQDpZBpFgW1LGvDabVjdDla++wbKlteDYgqXrr0n6Np/kmhnP0f+63kcJV4WbF2JunUFYoTlIJfOEunoI9R8lsHTnUQ7R1eTdgQ8+Buq8NSU4izxYXHZsdis6DkdPZMlORgh0Rsi1NJNvDfI4KkOBk914K4qZfEtGylfvXDGXUqDbeaNxFddit3joO/0Wc4ebGb5zesnt4FYyHyTstrAOdoiUbAc9XQMiyPNglpWhVJWNak3O6EbhA+fIHb8DPqI+LHBqJXKVVVYRBYx2IdSNkUX4QyhKAreVUsZ2LGf6PEz+NYsnzVBm+iP4vAG0BSzD55itWPxe8kFw8RPnQFA87gn5T5TRwRvT4bJutsKgds5KZIkF4eh77Bid6A6XRjRCPrg4Cihnu3tnb5IOq+7TYqk+YoUSTNAKplmZXUlJW4nmVyOrZ94O+6KQGG+t6YM7zu2s+iWjXS+fozO3UdJBaOc/s0eTv9mD6pFw+KwmenXiXMeOAr46iooW9lA+YoG3FUlkxY5iYEwXftO0rn7GPGeQQ4//By+BRUsfetWAgtnLoMr2GqKpJKGSvy1pfSdPkv3sbbJiSQhhotH+kan/QvDwDjbggjm51usqBU1KKUVw2bq82Bkc/Q+u4N0j2npUiwajuoKHDWVOOur0dJRjO52jLMtoGmogbmxKLkW1xPccwg9niDd04+jpmLG9yEMg2w4RibqxO5zmOK0pApbWSm5YLjQ0NZePTmxqNrzIil9fpEkdB2ROX8hSRh2t8nAbcnFomBJcthRnU6MaIRsd75OmaaBrqMPDiByuWm53Ia2r9jP+e7LmKR5jxRJM4A1o7Osyny4vtHWxa3+4qnTNo+TxW/ZRMMN6+g51ET/0VZCzV3o2RyZ2HAPLLvPRWBxDSVLaildvgC71zWtcbnK/Cy9YwsN16+jfechOl47QqSjjwPfeYLyVQtZescWXOVTS7UvxpAlqbShkorltRx8dCd9pzrRszm0CYoGApCKm0HbimIGFucR2Qx666nhoOzKWlMgTaG4oxCCgVf3ke4ZQLFaKL1mA+5FC1A0dcQybpR0EhHsx2hvgnQKpbL2ogdwqxYN18I6YqdaiJ9pnxWRpMfiIASpcHKUSLLXVZM43VxYzl43OQE9FUtSoeikqo5KgS6GjEmSXEyEYQxbeuwOVJd5vzXiZiKJtaaW3MAAIpkgN9CPtWrqL5giZd7fFcfodjyyBMD8R4qkC0QIwUKPG0VRaB8M0R2OkkllsE7QvVyzWai9egUN21YR8Lvoau4mHU+DomD3u7E6ZzZw1+qys+S2zdRtW03L8/s5u+8k/cdaGTjRRvWmRuqvWYO76vyBusUQQhDMi6SShZX4aspw+N2kwnEGznRTuaJ4g9QCQ1YkT0mhoatIxEyBlMua1p36ZajeqYu5+Jl2Eq2doCpU3X5d0bijobIAhqIiBnsxejtRknHU+iVT6sc2E7iX1BM71UKitZPSazaMEnMzQS5faTtnqIBiitN0EltFGdbyUrL9g1gryrBVTM6aNh2RpJ6nkCQMlwDAMBC6PuPtISSSkYj0iBhHq3VMX0HN70fRNDKtLWS7uqYskoQQI0TSuZYk87stY5LmL1IkXSC9R5rxO+zkdIOjnWZjxEw6g5vi1iQhBP2tPcRDMRxuB+5NS3GW+rD6Zv8isXtdrHjn9Sy4Zg1Nv93DwMl2M1Zq7wk81aWUNtbjqy3HU1OK3e9BncRDOhmMkY4lUVSVQF05iqJQsbSW9v2n6G/umlAkiUwK4mEUoOXNTgbbDuLzKDSsKEXVVOLhFMdeawflFA6vA3tZAFdVKZ6qEnz1lROKSSOTJbTXDKAPrF81YWC2oihodYswXG6MzhZENITedBRtYeNY8/gsYq8qR3XYMVJp0r0DM25NGhJJmtsDbi/EIxALoZTVUHrjNWT6B7GVl07aijbkbtMn4W6bbGYbjG7bILJZKZIks4pRcIXZzZcm52jLveb3o3l9ZFpb0IODGMnkhA2az0UkE2ZYgapN4G6TImm+IkXSBWDoBmee2QdAU+8A2Xzl4fEKSra8cZpXfvockd5QYZqqqSy5upHVN69nwSwEVRfDXVXCug/fQailm47XjtB/vJVY9+CozDhFVbB5XThKvDj8HhwlHpwBL/aAB2eJB7vPjWrRGGwzhaG/tqzgWitbXE3P0Wa0RBi9swUjl6Efg2wyZZb/FwI9ayBUBZfPQXQgTqKtm4ZFAQKVZi2S/s4wJ1/vwOHQqKhwoKoGerif7lNtJBJZUMBTXUZgcTXlKxcSWFg1bLoGQm8eQ0+msfg8+K6aXIFItaQCxeEyrVjpFHrzcbSlqyeVOTcTKKqCs66KeFMbyY7umRdJEVMkWbwe03IXj0DMbHqraBr2qqntT5uCJUmPm+UaNNf5XceKoqBYrYhsFiObnZSwkkimy1CNpCHRr3qG6yEpdgdqXthoJaXowUGyPd3YFy0+/3aFQO/vQe/qLGz33Pu7dLfNf6RIugD6j7aQGoyQyeVoC4XxBryEB8JF+7ft/tWr7Hl0BwAWu5XS2jISkQSxgQindx/n9O7jBGpKWfuWTay47irsrlmqlTOCwKJqAouqySZS9B9vI9zWY9Zg6g0idIN0OE46HCdcbGXFtEzphsDjsuK0qZx5di+azYJPTXLXBzegaqYLSwDG8GooCqg2FS1fIsHlttK41bQ4CcAIVFG6eC2bVgww8PKe/FuYigZU1XgIxnRCPRFiXQPEugbo2HkEq9tB+coGKlYvwlPuI3rMbPNRunXdlCwRitONtnQ1+hmzSa7RfgZ18YqLFqPkXFBdEEklW9bO6LaHqmpb/F6zHpWimi7NdAIc47cgGQ/VYX5+RjqDEGLCc6Tn2zxo7sntR7FaTEEt45Iks0zBkpQX44qmYV+2nExrC/ZlywrLWSoq0IOD6KHQ5LY70EfuzKnC32pZkZeQQgkAGbg9X5EiaZoIIWjL10Nq7gviLQ8Uelida0k6+My+gkBaf8dmtt1zA1a7DYtFJR2KsvNXOzn26mFCXYO88pNn2fHQ8yxcVU9dlQ9HmR9HfTVWmw2L3YLFZjV/7BacHteMpIpbXQ5qNjVSs8mszyMMQSaeJBWMkgrFRv8Eo6TCMYysTjpiWgccNgvZwQhtrxxk1fYGymrN+kjRwQShnhjJWIZsOkc2rYPFiqcqQO3yMnyKgkBBONxmlWyXG620EsVmR+gGfQeOghC4l9RTdt3V9O/YR+JMO+VlTlbccwvR3jCDpzvpP95GNp6ia99JuvadpLrWi8tpQfV5sVaUTvl8KFYb2qJG9FNHEPHIRS0P4KytBEUhG46SjcaxeqcuXoohcjlyEbOJrbUkYN6c3X7TkhQNTk8k2Ue3JlEmKBswZElS3ZNLQjCDt5OyVpJk1hlqbKuOcIXZ6huw1TeMWk7zm3GReiR83pcCAL3fjNVEVdHKq9DKi/RdlMUk5z1SJE2TUEu3WcNIVWjuH2TJ+uVEQ+ZDaKRI6j7dyas/fQ6Abe+9gc2/s33UdqoXV3PLx+5k2z03cmLHEQ49tx8lFmeRC7R4DOIxTu0+yomWQc5Fs2r4KgKU1JRRvayWmhX1VCysQrvAFiiKqmD3urB7Xfgbxl7YQgiy8RTJUJRXHnwMcjpLtq+mpsaG16NiGIIT+87SfryX2vVLqb16JeULyjGcdiwuJ+g5aDtmNlKtqsfiGRs0HjvVTC4SQ3XYC0HM5ddtMgPjB0KE9x6i+q6bqFq3FEM3CLV003e0mejpdlxOC0IIWg930HTwp5QuraNi9SLKVjZgc0/OdaPYnajVC8z+bj0dZjXvixAbo9pt2CvLSPf0k+zoxrpq6YxsNxuKgBD5FOf8OfAETJEUD0N53ZT7wimalrf45DBS47cmEUKgx/LxUBM0zR2JarWiIwtKSmafoRIWin1i673qcpvXiK4j0umxQdgjEEJgxMzngW31OlT3OBXppbtt3iNF0jRpf9W0Iul+N5mcjr/UV2h0m86LpGw6y7PffgIhBMuvXc3V77i26LbSgxGiTR0sWlLJkpXvoOPJV0A3yCoqFkOnvtpPTGiEoylymRy5TJZcJoee1QmeHSB4doAz+04C4LDb8JR5abxxLfVrFlNaW0bra0do2XEYPZNj0XVXsfTWjeO+BWVSGfRMDoHA7nIUFVyKomDzOEnFUiTjaTSrhRU3r0J0mmnkliUryBxLEE92onld1F7dSEmJm2AwTi5nQKjXvCnYHOAOjNm+EILIUdNd5l+/EjWfKahoGhU3b6Pr8efJ9AcJ7j1E6bb1qJpK6dJaAg2VdP13jFw0jnB7sPgMsgMRBk62M3CyvVCBfMG1ayhdVnf+LKuyShjohUwKMdiLUjG9QnJTxbmginRPP6nOHnwzJZKGerKVjGhc6/Kab7J6zuyb5zp/a5FzUe129GxuwtYkejRmdkHXNDTP5PpfDddKku42yewyXCPpPPW7VNWsoZRIYCTiEy4vUknzulJUFOf4LwYyJmn+I0XSNIj3BvMPXYg7zJu52+fGGzfTPEN9IQD2P7GLcE8Qd4mHmz58u/lwMgyUVBTScUQuzWB7Fi2XI+DTyUS6ifdFsbtsaH4/dW+7nt6X9xM+3szmbctY8PYbC2MwdIPoQIRIb5D+tl7Onuyg+3g7miFIDkTZ9V8v8bryElUlHmwjstROPL2beDhG+epFRPvDRPrCRHpDhHuDhHtCJKOju1/b3Q4C1aWU1pVRWldOaV05ZQsqcAU8DLR0AVC1vAbR1Qbk6xl5AwTqys1z0TkwanvkssNp/6U1Ra0XyY5ucpEYitWKZ9nCUfMsXjdlN2ym77nXiB5rwuJ24V2zDAxB/8t7yEXjaG4n9b9zC4tsVhK9IfqOtdB3tJVY10ChAnlgcQ2Nd1+Lu3L80geKoqJW1GB0NmP0d5sVvtWZTcsvhrO2itC+I6S6+2YsBT7dY5r+bZXlwxMVxbQmRQZMi9J0RJLDjh6Lo4+TrACQ6TGD+62lky+EKluTSC4WQ+UpJpPJqrrceZGUgNLxM2ZF3oqkeDwT3zNkTNK8R4qkadC+4zAA5SsX0tllPnzcPjcOt4ODOw+x5/m9bLpxA288tRuA6z/4FuxOG0q0DyUeQhGj3xo0i4Zm0bC5bHiqvFRdBYZmg3SU0o2NhI83E2/vIRtLYPWYMR2qpuKvDOCvDFB/1WI2vm0bT/3zz+g5ZWZSVNaUYstkUVUFwxAE4ylURaHE46B95xFee3wXuiHOe6zpeIqeprP0NJ0dNd3hdeL3mGmwy1eXmBVjHS7UyloA/AWRNLqtCoNdZiC23TXuQ3ko6NrbuAi1SDFKV30N/o2rCB84RnDvIRJtZ9FTaVNYaSrlN25BzTerdVeV4K4qYdHNG0kMROh8/Shn9x4n1NzF3m88RuM7thdisYqhBMqgpwNyWUR4EKWkfNxlZwprqb9QCiDVO4Cz5sLioUQuR6bPdNfaq88JHi2IpDCUG8Pm/0lyvlpJRiZL6kyLue+62klvV5GtSSQXAZHLQc60Vk4mi7JQaDIRn3A5I26KpHHdbIUNSkvSfEeKpCmSjsTpfvM0AA3Xr+W17/43AG6vi1VbVvH8L1/gbPNZfvvtX5PL5KhZXseytQtQ+5tRdPNiFJoV4fAyeLSN0Ml2LB4ndXduRxVZlHQcJZNE1TMQ7sGhqNRsXkzvm21ETrVRtnFl0XHl0ln6ms0y+m67BUcuB6qCq9yPfUEFSk+QWH+ETDqDTVWoKPdhqQjgLfObYquqxPypDGB12EBAOpEiHowxeLaf4NkBBjv7GezoI9QdJBVN4jJgyapKSksd5LI6j/7kVQL1p1m8cRkL1iwCIBWOk44locSNSMbMIGGA8tqiVqRMKELqrJkRd/J0D7E327HarfirSqi/ahGltaZI8a9biaJqhA4cJd1rWqtUu43yGzbjqCouZFxlPpa/7RoWXLuGk4/vZPBUB8d/9QqJgQhLbru6qJVDUVXUsiqMng6MgR7UiyCSFGW4FECqs/eCRVKmfxAMA9XpQPOe4+5yuMFiNS18iYgpmqaAdp7WJKnWVkQ2i+b1YJuOSJKWJMksMpTZhsUyqXYjwyIpWXS+kYhjxCIYUTOTVHVP7F4uWIl1fVLB4JKLjxRJU6R95xGEbuBvqMLfUEU8755y+934Snxcc8c2dv73DnqOd6AocNdHtqMFTeuO0CwY3kpweAgePk3vgSZQFOruurHwxiE8pQhDR0mEURIhFD1LyQIf/upVRLojpp+7SCXo3qazGDkdl92CK+8CXHrLRhrv3Iw6wl3Td6Kd3d95Ao/dylv+5L1YxqsMroDD48ThcVJWP9r6kMtk6TzcwpsPP8/aa80MkDf2dTDQHWagO0zTnhNYHTbKvS70dJZgex9VC8rQezrMDXhLx2RTCSHoPN7GwI79BCzQ0xdj7+FTnEvV0lo2/852Fm1Yin9tI65FdaQ6ukHTcC2sRbOfv6aRs8TLug/dQcuLB2h54QBtL78JhsGSO7YUblJCCJqOnsFf6qe8ogJ6OyEZRyRiKK7JxdVcCI7aSrMUQGcPJZuvuqBtZXpNa569qmLsTXjI5RbqM9uUTFEknc+SlOkyhbtjyeIpPQCGLIiyBIBkNimW2TYRSr7QpJFMjJkn9ByZowfNe/TQ8p7zWJJG3ssNw+wTJ5lXSJE0BbKJNGf3HAOg4cZ1AMQjptnV5XVz4IX96Kks5S4PmkXlPZ++GY81iwCEqwThLUcoCgN7jjCw7ygAC2+5GldNuRnQPISqmWLJXWLGL0X6US0QWOBH9DYhXH6EuxQsw4Kg+0QHVk0tCKQ0Civftm3MMZQvX4Cr1EdiMEL3wTMs2LxiyufBYrOS6A+x8cZF2OwWcLrY+vH3suS2HpoPnObUrmOEe4LEFQWH1cIL33kKERukwmfWO6J0uKx/pD/MydeOcvyVQ8QHwty2fTGgMpCGtW/ZhKvEQzaZoa+1m85jbfQ0neWJf/0FizYs44YP34av3D+tDDBFVVh86yasLgennniNtlcPYfU4abhuLUII/uMfvseel/ahaSqf/fv7WFVViggNYAz2ol0EkeSsNa1H2WAYPZFCc02/oGImb2kbFY80Ek+JKZIS44vw8ZhIJAldN4O2AWv51BoHyya3kotBIR5pkgVLVZcZYiBSKYRhjIo3MoKDowWS04XqOE9l7pHubT0nRdI8RIqkKdDx+lH0TA53VSlljfUAxKOmSBo8289/f+MxbJpGdamfd3zkGmoW+BAoGIEacJpvFP27DjJ44DgA5VevYsF16wiFxr6VAKAoCKcPHF56Xn0db4kNV5kbJRFGJMIIhxfhCiCsDtoOnMLjtKIAyUyOWDJLLpvDck5Mj6Iq1G9dyYmnd9O++/i0RJIwDIy+HmrWVSIEWOqWoGgqlYtrqFxcw9Z3X0/nsTb2//wl0v0RFD2L354FLOx9tZnuvhOAINwTIjSiyveyxWVYNBXF7eKuL757jOUhHorxxtN7OPjbvbS8cZquk+285VN3s3jjMqbLgmtWY+g6TU/vpuk3u3GW+jjT1cuel8xK6rpu8OOv/Cdf+sZfQGgAERpAVDdMqxP4VNCcDmxlATIDIZJne8YEsE8WI5slGwwBYBuvNYvNYf5kUhAdhMDk3XtD5QT05Fj3Qy5ilh1Q7LYpV82W7jbJxaBgSZrk91Ox2kwho+sYyeSo4qhGzHSxYbWhuj1Y6urPvz1FAYsFcjlELodim/0iwpKpMfupOpcJuXSWjteOALDwxnUoioKe00nFzYvs0CsHAaitKuF9n7mR2sVlZHMGGV81nR1hooMR0gOhgkCquvFqqravn5wLQlGwVlbT8sppOg6cRVdsKICaiqINtsPZk6zdUkfDqmrcpW4ywtxmrD9SdHMLNq8ARWGwuYvYiBYpk6Xv4HGWX2W64JSqBQUT9PBwFRasXsjm99wAwPVvX4PNbqGrPcjrzx6j9c0mWt88YwokBepWNXDrx9/KmqvMqtsl6xqLnhd3wMN177+F33vgY1QuqSGdSPPkV37J64+8UijkOR3qt19F7ZaVIODoz1/kpZ+bda3e9vt34vV7GOwd5I0Dp8HhAiEQwb5p72sqOPLWpOTZ3mlvI9NnWpE0jxttvH5TigL+vJUpPGAG1k8SS744pB5LjPkMckGzVrvF759yrMWwSJLuNsnsYUxVJI3o7WYkRr/cDtVFsi5cjG3FGlSPb3LbHLLc6jLDbT4iLUmTpHP3MXLJNM5SLxVrzL49iXw8kqIotBxtZdHCCn7/D2/C43MSGozx/IunaTv4JPGwaW26ZtNiarx27LWVBNZMzUXkWVyHYtGItPYRae3D4XdSsqQc/4ISLJpC4+bh6rDpZJZgbxRbagAlBmgWhGY13SiqBYffTeWqBnqPttK++xir7i5ev6kYejiInwiqqhKOC0orx68dFKgrZ8HycqobAqAolG3YwNv/tJ54KIqiqrgDHgIlbuJnOkm0tKKLHELAwLE2DMWCb9mCoumzpbXlvOeLH2Tnwy9w8Jl97H1sJ7HBKDd/9M5pFdJUFIXlb7+WZDBK8HQnq71++nwe7vzdOwB48qHf8Ppze9j0P96D0dmCMdiLUl4960GWzrpqIodOkursGWPanyzndbUN4QnAwFnIZSARBffkbvBaXiSJXA6RyYwqyJcL50VSwD/lcQ/HJElLkmT2mKq7DUyXmxGLmo1r8wjDQOQz3pTzZbSdS97FJnT5QjAfkSJpEmTiSVpfegOAhTeZPckAYkPxSE4HS5ZW8sFP3YzdYaX3bIjvfO23iLQAAXannWw6Q6nDvBhe+M0+FgRT3HHvHZMeg2azUr7lKvpee9McU0qn60A7Z9/ooD+To35pBeULS/GWubE7rVQvLAUMiI62eggA1cLG25bSt8hNJpVERAfyZmQrqBazwGARASDiUfSWU2iaSnd7mKpbbpxQKDh9DjbekneFuUpwlZeyKBAAINUfomfXIVqfNesreXx2sKikU1nSZzqJnOnEUR6g7i1bcNeNdf9oFo0bPnQbpXXlvPTD33L8lUMkwnHu/KN3YnNMvSGtqqms+d1beOaBH+K227h9wxocdhtbbrqaJx/6DUf2HSNjd2NRNcikEbEIinfqD/+pYK8sRbXbMNIZUt19OGuLtDU4D0NB2+O62oZQNfCWQbgPQj1meYZJiEBF01CdDoxkilwsgW2kSAoNiaTAlMc9XAIgJ7N+JLPGkNA5b+zQCNQiwdsiETctsBbLpOotjUSxWMz7ck6KpPmIFEmToOX5A+jpLJ6aMqo3DHeUT+TjkTZtXcp7fm8bmkWjq22QF3++lzVV5cRSGYwSP/d84QOET7YyuOMAGV3QMxin5+nd9LZ08/G/vxcUDWGI8/ZhK1nfiL08gMjmcC+s4dQPH4dUmuxAgsPtp7nq3TfgXr2cI0/vYqCpneVbl1HbWGOWHjCyoOdQAIwcdgssWJl/6MZG1zISKKbVSbMiNFM0CV1H9PdgcVgY6IlCZS1WuwWEAShjH6hCoPR14HBZCQ/EyaW8VNYJ4mf76Nt7jMjp9sKizuoStEyKnCF4sbULDworykqgP0TTfz1D5TVrqbrmqqKWlDW3bMAV8PDbrz9G28EzPPZPD3P3n92D0zu5HmEj6Trby7OHjnHnmpXYgBOP72DFO6+nsraC3rN9HNp7nE3LyxEDPYjBHphlkaSoKq6FtcROtpBo6ZyySDLSGXJh0+Vqq5hE6YJABUT6IZWYUgVuze3CSKbMJrZlZnFOI5vFyDe1nY4laUgkgelyU8bLwpRIponZQNm0VA6l9k+GYmUAhlxtqts7dUGfd7dJS9L8RIqk8xBq7aZzjxlHtOyubaOETDwS567fuZq73nE1AKcPdtK+u5WFpaarosLvQnPYSHYPkG43q1NXb1nNe6/dwK8ffJT242088IF/wO60k4gm8JX5ueF9N3NVPubpXBRFwb3AfFDmsjl6eiJU+u14PTaE3UH91pVmM0WXmzOHzpJVndRsu5pCpIgQYOTMLAo9x8CxZqJdvXjLvVQsqQIjh2LoKAjQs6BnGTkKLV88stqXD1bsMetFCXNwZld5FFAA3TD35bDh9IOixkgffxOrblC73EfNstUkU1nauvrxOuzYhJPXDzVxpKmFgYEIz2kW3nLVctbW19K76xCRlrMsfseNWIuIn8Ubl/HOL/w+v/6/P6f3TBePfOmnvONzv4uvfGoP59/87FmiqTR9Lgt1WYXu/adwlQfYdMNGnv6v37Lv5f1s3vYh9IEeRCSEyKRnPdDStWhBQSSVbF2HOoWA8aF4JIvPi+aYxDgtVvCVmRXRB7vA6ZmUNcni9ZDtHyQXiRWm5fLB4qrLOW5Pt4lQVBXFoiFyOiKTBimSJDPMUEyRYrdPKRFjOCYpXrByDhWPPG/KfxFkksL8RoqkCcilMhz7xUsgBNUbllGyeET8jWFQX6KwMS+Q9r98iv4j3XgcVpKZHG19YWpK3PiAEw8/g99vmmD9KxdR4ffykS99gsf+7Zf0tvaQyJoXa6Q/zBPfeIxg9yA3/t4tE47t2HMH6O+NUOmvwO2yUXf9ZtR8PI4nLw5i/eHRKymK6VLTzIvSt2oFex/dSy6ZYe37biLcHaLrcDOK0PGWuSldUErV4gq8Dh1VVchmdVIpHV9lAAWjUDlcAVOAiXMCD/OWH6evuPnZBZTVDAuZu9fUcvf7b0AIQSpj0N0TpL+jn0q7Ez2Rpe3x56i+biPuBdXmtpVhy1L10lq2f/x2Xvz2k4S6Bvnen/876hIf7/34eygrL8XusI8SnkII9u9+kwN73wQhWNjQwO4X9gBww/tvR+2LcPqp1znz2z2suHY1TwMHXz9MSgeb24uIRzEG+9CqF0z4OV0ojuoKLB4XuViCRHMHnuWLJr3upF1tIwlUmhlu6aQplgIV513FEjBfCoYCtQFyg/lecaWlk9/3OahOF3o0ih5PTLrnm0QyWfS8pVN1Ta7p8hCqx3x5EJmMmR3ncGCEQ/l5k4vlG0nhRStTvNaYZG6ZMZHU3NzMAw88wL59+3A6nbz97W/nc5/7HI5JBMT96le/4lvf+hadnZ0sXLiQP/qjP+Kuu+6aqaFNCyOnc+TnL5AKxXAEPCx/+4jg5kwCNdRNecCGnjN4/ldvkDwbptznJGcIxNIFnD7UzKmuft5y/VoCmGJCWCwk+iMomoXSmjI++S+fJhdPEByIYbHbOPjiG7z6i5fY+atX8JX52HDb1UXHlowkOPLUbtwWlWxWx2rV8HiHLQXeClN4RPvDE8ZzWJ12lt68gRNP7ebQL18mmcgWrE6h7jB9zX1UlWgYPjvBgQT7X+tk+yffgR5wk40lyERiJDr7iHf0kBkMoWoqVreN+o11WOwWov1xDu06jcvqIJczOHi2k55IFF0IrFaN9asWcc3KhVgdVhy15VjsGoqeQ1HAaddY3FDO4oZz3URx6DXblggUUDWyOZ22ti4GOnpYsr0Sv+LGyAhi0SS//veHCYZjqFYrN959E1vfspVjh0/xrX/7HkcOmjWvVEWl1leFTbOy+aarWbi8AZZDJpqg7dVD9O06yuYVS9l7ook3XjvIti3LEfEoYrAXUVE9nJ0yCyiqgmfFEkL7DhM5chr30oXndcuCKQLT3fl+bVXnFzoFLFYoq4W+DhjsNq1J9onjNawlAQCywVDh+5bpMwWapXT83njnQ3PnRVJinBIZEskFYERMUa95p2b9UTQN1evDiITRQ0Fz/WwGVA3VNw0XfN7SKjLj9z+UzB0zcnePRCLce++91NbW8tWvfpXBwUH+8R//kVAoxL/8y79MuO7TTz/NF77wBT71qU9x3XXX8eyzz/Knf/qneL1err/++pkY3pTRszmO/fJlBk92oFo1Vv/uLVgcNjOmJzZgVsIGYpEUT/10N0YkRX2lD0MIKm9Yj3dhNS88+gqKovLCziO854bVACTCCU7817PmThQFq9uB0+dGddqxuBzUB1zceNtG3thxhN9+/ykqGiqpaxyutSEMQbC1m/0/exGPVTUfRoqGFYg2teNdYlo1PKVeUMyyBaloEqevuL9dCMGCTctpem4/Qtdxu20svv4qSuor0JMp/FoMu0MjFc/Q1RRm4YISWn/xDLlEquj2EprBmqtrsVg12tv6+F//+DMSyTS3N67B53DSEhygOxGhv3+A2hI/71zdSLi5n1ePNfFfr+zNnxaF0hIvNdWlVFeVUFtTxqJFNVSW+ynzuXG57Gg2DUVRTLegkcOmwrJF1SxbVF10XKPobWJlQOfvP/e7JBJpBCrRcIJEPEU8kULXIDvYg9XlYskta8HQadt5lMZAAGVRA7ueeZ1r3rKlUFfI6O5Aq1s0qe/VdPE0LiJy6ATZUIR4U+ukrEl6LI4eT4Cqnj+z7Vy8pWb17WQMupuhbrkpns7ByGZJHD9JbjCIZtPQM2YMlMhm0MNhUBRsVdNvqVKI/YhLkSSZefS8SJqOsLGUlpKJhMl2d5nXCaCWlE4rA1Wxmi+4QlqS5iUzIpIefvhhIpEIjz76KKV587qmaXzuc5/jM5/5DEuXjp/u/m//9m+89a1v5c///M8BuOaaa2hubuarX/3qnIik6Nl+jj3yCvGeQRRN5arffwv+ah9KuMdsFZK3tZw+1sOzD+/BZdVYWhsAIO5ycu1NGwFYsKKejhPtNFQGcNgspLM5QqiUBpykQzEQgmwsSTY2ugifBly9vIZsTmff95/AuOcWrHYbvcfbOPvGafS06bdWFAV/fSXL37Wds79+mVjLWXKJFBaXA81qwV3iJT4YZbC5i0C5l3QoRiYUJROKFn7X0+abS03ZsKUgc7KZ0NlO6tfXYnNYyaZytO/vxEjlGCmNdCEIJRJ0BcOc7OqlalE5H37/zXg8Drq6g/zzg49TUV/Ftbdupcqw07HrBG+9cTvXfvJtRE62EHz9DRRD0B1P8JuDJwrbFUIwMBhhYDDC4aMto86NqqhsWtTA29avxum0Y2gKh7u7aA4OUFZVxrbtGygt9ZOOJ4j0DVLq8+DzubA7rNicVuwOK6qqYLNZKbVZKRg56s5xR6VD5g/QuKGUJWuuI9wVYvlggv6eMM2v7mfRuqUYbacQg70YTjdUTj3zbLJodhv+dSsJ7j3E4O6D2CtKsQYmNusnW80WMLaKsinFMQGmW7ZqIXSehmwaOk5B9UIYEW8hdJ3onn0Ft5qqKSiqRmTX7kKWjn1BHap9+jFbmsd0g+Si0WlvQyIphpFOFRILNP/URZK1ppZMawt6OISayYt4q51ccBAtUDKl4O2h8gMilZx2qQ/J7KGIC6nCl+dDH/oQXq+Xb3zjG4VpmUyGq6++mj/90z/l4x//eNH12tvbue2223jwwQe5/fbbC9N/9atf8Vd/9Vfs3LmzILqmiq4bDA5O3KkZwNANkgNhwm099B1tIdbZh8Njw18ToGHrchwOUPThgLrB/gQvPXqAzqZ+KgJO6iq8qIpCdyTJW77wITwBM3aio6mDH/7Nt3jbtpW47FbebOrmcHMvd977VirqynFaLCTae+l+8zTZRBpVUVBU0FQVq0VFHeFSyeUM0lmdTFY3C1RmdcpX1HPDH95NLpmm89cvkwlGsFeUYC0rIRuJE2zuglwWbbIXnKZid1nx13gpqw+gqArpeIamN7qJZ3SCySTH2to52dxGKJEkZwhqq0rZuHYJt1x/FYsXmhaDts5BBi1+1l+7sXCjiPUGefbLD+H32lm6dgEiZn4ujtpKKm7ehmK1kE6lyWVzoCioqoqmqaiqSigYpr25g+bTrZw52cKxQyewJHO88+p11OczqTK5HMfO9tLU009fJE46o5vFPg0dh9XK0tIqHBYbKKBaFDKqjm4RqFYVX5mXleuWseHaq0jG47z6/KsEvC4WLayhfkEVVm38m52eNUDoiJwBTjf+BQuIGxZ0oYyKl5oJhGHQ85tXSPcMoNptlGxdh6uhtlBPaNS4kkn6f/MSIpvFf80mnPV109tpNg1dzeb/gOLx462tIZZRCO07SLa3D8ViwbVqBckzLYWHDoCttgbP+rXDDTyngR6LEXrxFVBVSm6/FdU6+8HbFotKSYmbYDA+ulXQZcSVcIww8XGmm8+QaWlG8/txbdo8re2nzjRhdHegaiqGbqCnzZcD1e3BtmgxlooivRKLIIQgvW8X6Dlsq9ejen1UVEw9AFwyO8yISLr22mt573vfy+c+97lR09/+9rezYcMGvvSlLxVd76WXXuJTn/oUTz755Chr08GDB3nf+97HT3/6UzZvnt4XWAiBYZxzaEYOBAjdAM6ZpygTfKEF2axOLp0DQ5jLAkOpX7ousLkdKIaRD2AGgTAbFgKGEOR0gciPR1FAGZk3pipYnXYsNgvCEOjZHEYmO6Ly8blNScdMKSQhicI/Q+dhaIJpAzNjRsBis5jjMP8x5444fj2nk0npIAQ2pxVFHX3M5t8jAqERGLowzw+MLtosjNFjwownsnmcE2ZPhUMRclmzTo4QAj3fKds8ZSp2qxW7RRsjBM3lzTENjWNoNyM/h+FTJUZ/G4bWBXRhYLFoWK0aVqsFLS/gzn/zO2fHYz6x6SGGvmMjKXyG5rGPPOhpvZXmz3dh84V/xsP8Qgpj9L6BC34rFsbQtTrBsSiY9b1mAEUBVVUxDGMqhccvKa6EY4TixymyWfM7lb83KzbblIW80HNmdez8vR7y31BFQZxzrytcm4piZrGNc98Q2ay5TQWwWLBMIyNUMjvMWEySzzfW/O/z+QiHw0XWMBmad+66/rz5c6J1z4eiKGjnWgG06X/xNDtwkRJsrHYrMPniZrOBBbDP8ctMaVlgbgcguWJRrwCXx5VwjHDOcWozULLjAp4j429T9mybr8zqVTLZSrnnLjP0Fiur7EokEolEIpkrZkQk+Xw+IpGxzVSj0WhRC9MQ41mMhrY10boSiUQikUgks8mMiKSlS5fS1NQ0alomk6GtrW3CzLYlS5YAcObMmVHTm5qaUBSlMF8ikUgkEonkYjMjIunGG29k165dBIPBwrRnnnmGTCbDTTfdNO569fX1LFmyhCeffHLU9F//+tesW7du2pltEolEIpFIJBfKjIik97///Xi9Xu677z5eeeUVHn30Uf7+7/+ed7zjHaMsSX/913/N6tWrR637x3/8xzz11FP867/+K6+//jr/8A//wI4dO/jjP/7jmRiaRCKRSCQSybSYkew2n8/HD3/4Qx544AHuv/9+HA4Hd99995iSAIZhoOuj+3vdddddpFIpvvnNb/Ld736XhQsX8q//+q9zVm1bIpFIJBKJBGaoTpJEIpFIJBLJ5caVUShDIpFIJBKJZIpIkSSRSCQSiURSBCmSJBKJRCKRSIogRZJEIpFIJBJJEaRIkkgkEolEIimCFEkSiUQikUgkRZAiSSKRSCQSiaQIM1JMcj6i6waDg/G5HsaEqKpCaambwcE4hnH5lqu6Eo5THuPlgTzGy4dL+TgrKrzTXlcIMS+Peb59HpM9x9KSNIeoqoKiKKiqMtdDmVWuhOOUx3h5II/x8uFKOc5zma/HfKl+HlIkSSQSiUQikRRBiiSJRCKRSCSSIkiRJJFIJBKJRFIEKZIkEolEIpFIiiBFkkQikUgkEkkRLtsSABKJRCKZGwzDQNdzczwGhVRKI5NJo+tzn3IOoGkWVFXaJi4lpEiSSCQSyYwghCASGSSZjM31UADo71cxDGOuhzEKp9ODz1eKolxaqfBXKlIkSSQSiWRGGBJIHk8JNpt9zoWApinzxookhCCTSROLBQHw+8vmeESSySBFkkQikUguGMPQCwLJ4/HN9XAAsFhUcrn5Y0my2ewAxGJBvN6SWXG9Gbo+49
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

is this the same visual as above? if so, this part could alternatively be the deep dive into the types of datapoints in each cluster

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Added a section for 'Profiling the Clusters' to deep dive into clusters by DenseClus

@srushtii-aws
Copy link
Contributor Author

Resolved most of the comments. Added descriptive stats for analysis on clusters formed and observations.

Copy link
Collaborator

@bharven bharven left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

few more analysis comments!

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

FYI can't leave comments on specific lines because diff is too big (and github vs code extension doesn't support commenting on notebooks microsoft/vscode-pull-request-github#3462). Will try and be descriptive in comments.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

add a comment explaining why we only take native_country = " United-States"

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Add a markdown description about what/why we are doing in "Create UMAP embeddings & Fit HdbScan for Numerical and Categorical features separately" section (ie "a seemingly straightforward approach may be to try clustering numerical and categorical features separately. lets use this as a baseline to compare against.. ")

also include brief overview of what UMAP and HDBSCAN are - can probably pull this from other notebooks

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

thoughts about baseline separate numerical/categorical cluster analysis:

  • cluster results don't look super meaningful, could this be improved with hyperparameter optimization? this may be too much for this notebook though, especially considering this is just supposed to be a baseline and we get reasonable denseclus results. I'm open either way here, any thoughts?
  • in the select_dtypes line why are we dropping segment then adding it back in the next line?
  • can we expand the analysis to look at more than just mean? I think other descriptive stats might help with the story telling (but understand cluster quality is not good so there isnt much of a story to tell)
  • can we see the columns used for categorical clustering?
  • categorical analysis points 2 and 3 seem to be conflicting: we are saying both that there is a small finite space where we can have points + we have a large sparse space

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can we update all of the plots to have appropriate x/y axis labels (or remove the labels) instead of None

notebooks/DenseClusImplentation.ipynb Outdated Show resolved Hide resolved
notebooks/DenseClusImplentation.ipynb Outdated Show resolved Hide resolved
notebooks/DenseClusImplentation.ipynb Outdated Show resolved Hide resolved
notebooks/DenseClusImplentation.ipynb Outdated Show resolved Hide resolved
@bharven
Copy link
Collaborator

bharven commented Feb 16, 2024

@momonga-ml ready for your review

@bharven bharven self-requested a review February 18, 2024 22:49
@momonga-ml momonga-ml merged commit a9ed99d into main Feb 29, 2024
1 check passed
@momonga-ml momonga-ml deleted the feature/jumpstart_notebook branch February 29, 2024 20:22
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants