Skip to content

Pytorch Code for "A Broad Study on the Transferability of Visual Representations with Contrastive Learning" (ICCV 2021)

Notifications You must be signed in to change notification settings

asrafulashiq/transfer_broad

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A Broad Study on the Transferability of Visual Representations with Contrastive Learning

Paper

This repository contains code for the paper: A Broad Study on the Transferability of Visual Representations with Contrastive Learning

Prerequisites

  • PyTorch 1.7
  • pytorch-lightning 1.1.5

Install the required dependencies by:

pip install -r environments/requirements.txt

How to Run

Download Datasets

The data should be located in ~/datasets/cdfsl folder. To download all the datasets:

bash data_loader/download.sh 

Training

python main.py --system ${system}  --dataset ${train_dataset} --gpus -1 --model resnet50 

where system is one of base_finetune(ce), moco (SelfSupCon), moco_mit (SupCon), base_plus_moco (CE+SelfSupCon), or supervised_mean2 (SupCon+SelfSupCon).

To know more about the cli arguments, see configs.py.

You can also run the training script by bash scripts/run_linear_bn.sh -m train.

Evaluation

Linear evaluation

python main.py --system linear_eval \
  --train_aug true --val_aug false \
  --dataset ${val_data}_train --val_dataset ${val_data}_test \
  --ckpt ${ckpt} --load_base --batch_size ${bs} \
  --lr ${lr} --optim_wd ${wd}  --linear_bn --linear_bn_affine false \
  --scheduler step  --step_lr_milestones ${_milestones}

You can also run the evaluation script by bash scripts/run_linear_bn.sh -m tune to hyper-parameter tune, and then bash scripts/run_linear_bn.sh -m test to do linear-evaluation on the optimal hyper-parameter.

Few-shot

python main.py --system few_shot \
    --val_dataset ${val_data} \
    --load_base --test --model ${model} \
    --ckpt ${ckpt} --num_workers 4

You can also run the evaluation script by bash scripts/run_fewshot.sh.

Full-network finetuning

python main.py --system linear_transfer \
    --dataset ${val_data}_train --val_dataset ${val_data}_test \
    --ckpt ${ckpt} --load_base \
    --batch_size ${bs} --lr ${lr} --optim_wd ${wd} \
    --scheduler step  --step_lr_milestones ${_milestones} \
    --linear_bn --linear_bn_affine false \
    --max_epochs ${max_epochs}

You can also run the evaluation script by bash scripts/run_transfer_bn.sh -m tune to hyper-parameter tune, and then bash scripts/run_transfer_bn.sh -m test to do linear-evaluation on the optimal hyper-parameter.

Pretrained models

  • ImageNet pretrained models can be found here

  • mini-ImageNet pretrained models can be found here

You can also convert our pretrained checkpoint into torchvision resnet style checkpoint by python utils/convert_to_torchvision_resnet.py -i [input ckpt] -o [output path]

Citation

If you find this repo useful for your research, please consider citing the paper:

@inproceedings{islam2021broad,
  title={A broad study on the transferability of visual representations with contrastive learning},
  author={Islam, Ashraful and Chen, Chun-Fu Richard and Panda, Rameswar and Karlinsky, Leonid and Radke, Richard and Feris, Rogerio},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={8845--8855},
  year={2021}
}

Acknowledgement

About

Pytorch Code for "A Broad Study on the Transferability of Visual Representations with Contrastive Learning" (ICCV 2021)

Topics

Resources

Stars

Watchers

Forks