Raku package for geographical data (like, country data, city data, etc.)
Provides the functions country-data
and city-data
.
From Zef ecosystem:
zef install Data::Geographics
From GitHub:
zef install https://github.com/antononcube/Raku-Data-Geographics.git
The city-data
function is a powerful tool for retrieving and analyzing geographic data. Below is an example of how to use it.
First, we need to import the necessary modules:
use Data::Geographics;
use Data::TypeSystem;
use Data::Reshapers;
use Data::Summarizers;
# (Any)
Then, we can call the city-data
function to get an array of city data:
my @dsCityData = city-data();
@dsCityData.&dimensions
# (62350 8)
We can then use the records-summary
function to get a summary of the city data:
records-summary(@dsCityData);
# +-------------------------------+------------------------+-----------------------+------------------+----------------------+-------------------------------+---------------------------------------------+------------------------------------+
# | Longitude | Country | Population | Elevation | City | State | ID | Latitude |
# +-------------------------------+------------------------+-----------------------+------------------+----------------------+-------------------------------+---------------------------------------------+------------------------------------+
# | Min => -179.5 | United States => 32796 | Min => 0 | null => 7380 | Franklin => 41 | Rhineland‐Palatinate => 2266 | United_States.Wisconsin.Lincoln => 12 | Min => -26.900000000000002 |
# | 1st-Qu => -90.266519 | Germany => 12539 | 1st-Qu => 418 | 1100 => 395 | null => 34 | Bavaria => 2045 | United_States.Wisconsin.Washington => 8 | 1st-Qu => 39.0522021 |
# | Mean => -42.020578865598914 | Spain => 7896 | Mean => 9484.230714 | 0 => 346 | Lincoln => 33 | New York => 1854 | United_States.Wisconsin.Scott => 7 | Mean => 42.936357056980571624619 |
# | Median => -73.6671523 | Russia => 4644 | Median => 1486 | 110 => 331 | Washington => 33 | Pennsylvania => 1805 | United_States.Wisconsin.Union => 7 | Median => 42.4648803 |
# | 3rd-Qu => 9.620000000000001 | Ukraine => 1832 | 3rd-Qu => 5106 | 3 => 320 | Clinton => 30 | Wisconsin => 1785 | United_States.Wisconsin.Harrison => 6 | 3rd-Qu => 49.02 |
# | Max => 179.32 | Canada => 1008 | Max => 13010112 | 1.3 => 315 | Springfield => 30 | Texas => 1756 | United_States.Wisconsin.Grant => 6 | Max => 82.501389 |
# | | Hungary => 850 | | 120 => 293 | Georgetown => 29 | California => 1539 | United_States.Wisconsin.Wilson => 6 | |
# | | (Other) => 785 | | (Other) => 52970 | (Other) => 62120 | (Other) => 49300 | (Other) => 62298 | |
# +-------------------------------+------------------------+-----------------------+------------------+----------------------+-------------------------------+---------------------------------------------+------------------------------------+
We can group the city data by country and print the number of cities in each country in a pretty table:
group-by(@dsCityData, <Country>).Array.map({ $_.key => $_.value.elems }).Hash
==> to-pretty-table()
==> say();
# +-------+---------------+
# | Value | Key |
# +-------+---------------+
# | 1008 | Canada |
# | 32796 | United States |
# | 261 | Bulgaria |
# | 4644 | Russia |
# | 850 | Hungary |
# | 12539 | Germany |
# | 524 | Botswana |
# | 1832 | Ukraine |
# | 7896 | Spain |
# +-------+---------------+
We can also get a nested hash of city data grouped by country, state, and city:
my %countryStateCity = city-data():nested;
%countryStateCity.elems
# 9
We can then use the deduce-type
function (from "Data::TypeSystem") to get the type of the nested hash:
say deduce-type(%countryStateCity<Bulgaria>);
# Assoc(Atom((Str)), (Any), 28)
We can get the first defined record for the city of Stara Zagora in Bulgaria:
say %countryStateCity{'Bulgaria';*;'Stara Zagora'}.grep(*.defined).head;
# {City => Stara Zagora, Country => Bulgaria, Elevation => 2.2, Latitude => 42.42, Longitude => 25.63, Population => 140710, State => Stara Zagora}
We can also get the latitude and longitude of Stara Zagora:
say %countryStateCity{'Bulgaria';*;'Stara Zagora';'Latitude'}.grep(*.defined).head;
say %countryStateCity{'Bulgaria';*;'Stara Zagora';'Longitude'}.grep(*.defined).head;
# 42.42
# 25.63
In this section we show how to use Named Entity Recognition (NER) of Geo-locations provided by "DSL::Entity::Geographics", [AAp1], together with the Geo-data provided by this package, ("Data::Geographics").
In this code, $geoID
is obtained by calling the ToGeographicEntityCode
function with a string $s
and the target "Raku-System".
use DSL::Entity::Geographics;
my $s = 'Fort Lauderdale, FL';
my $geoID = ToGeographicEntityCode($s, 'Raku-System');
# United_States.Florida.Fort_Lauderdale
The interpret-geographics-id
function is then used to interpret $geoID
into its constituent parts, which are stored in %geoIDParts
.
my %geoIDParts = interpret-geographics-id($geoID):p;
# {City => Fort Lauderdale, Country => United States, State => Florida}
Depending on whether the Type
of %geoIDParts
is "CITYNAME" or not,
the code then fetches the corresponding geographic data from %countryStateCity
and stores it in $res
.
my $res = do if %geoIDParts<Type> // 'NONE' eq 'CITYNAME' {
%countryStateCity{'United States';*;%geoIDParts<Name>}.grep(*.defined);
} else {
%countryStateCity{'United States';%geoIDParts<State>;%geoIDParts<City>};
}
say $res;
# ({City => Fort Lauderdale, Country => United States, Elevation => 1, Latitude => 26.141305, Longitude => -80.143896, Population => 182760, State => Florida})
[AAp1] Anton Antonov, DSL::Entity::Geographics Raku package, (2023-2024), GitHub/antononcube.