Implemented a question and answering model for multi-hop questions that requires logical inference or aggregation of information from various parts of the information text (like referring multiple wikis to answer a question). Please check out the report for results.
-
To view answer prediction results on test data with trained weights or baseline model, use the Colab notebooks from the resources below.
-
To train a fresh model with the following configurations, use utils/model_trainer.py
- Configurations
Tokenizer Max Length = 1024
Epochs = 2
Learning Rate = 0.00005
Architecture Name = allenai/longformer-base-4096
Save Name for Weights = neew_weights\ - Command
python model_trainer.py 1024 8 2 0.00005 allenai/longformer-base-4096/ new_weights
\
- Configurations
-
The data pre-processor script and the data splitter script can be found in utils/model_trainer
https://drive.google.com/file/d/1pFJ0NAvMSn7C-vI-hzeSsCG7ppJGa8EV/view?usp=sharing
https://drive.google.com/file/d/1Ra6HNBnP8bGutLi7076Vk0kizznjOL-X/view?usp=sharing
https://drive.google.com/file/d/1DMWe7bLI0FZ6Qd5tUyIYBCWMy6uLrHy5/view?usp=sharing
https://colab.research.google.com/drive/1Yn7ARYrp3JGKNeBrTnuL2XMMvVkpQwto?authuser=1
https://colab.research.google.com/drive/10B71qnh9oAkeWJ7x71dTOABJh92KxHGs?authuser=1