-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
tests: add tests for finite difference approximations
- Loading branch information
Showing
1 changed file
with
143 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,143 @@ | ||
# SPDX-FileCopyrightText: 2023 Alexandru Fikl <alexfikl@gmail.com> | ||
# SPDX-License-Identifier: MIT | ||
|
||
from __future__ import annotations | ||
|
||
import pathlib | ||
|
||
import numpy as np | ||
|
||
from pycaputo.differentiation.finite_difference import ( | ||
Stencil, | ||
apply_derivative, | ||
determine_stencil_truncation_error, | ||
make_taylor_approximation, | ||
modified_wavenumber, | ||
) | ||
from pycaputo.logging import get_logger | ||
from pycaputo.utils import EOCRecorder, savefig, set_recommended_matplotlib | ||
|
||
logger = get_logger("pycaputo.test_diff") | ||
set_recommended_matplotlib() | ||
|
||
# {{{ test_finite_difference_taylor | ||
|
||
|
||
def finite_difference_convergence(d: Stencil) -> EOCRecorder: | ||
eoc = EOCRecorder() | ||
|
||
s = np.s_[abs(d.indices[0]) + 1 : -abs(d.indices[-1]) - 1] | ||
for n in [32, 64, 128, 256, 512]: | ||
theta = np.linspace(0.0, 2.0 * np.pi, n, dtype=d.coeffs.dtype) | ||
h = theta[1] - theta[0] | ||
|
||
f = np.sin(theta) | ||
num_df_dx = apply_derivative(d, f, h) | ||
|
||
df = np.cos(theta) if d.derivative % 2 == 1 else np.sin(theta) | ||
df_dx = (-1.0) ** ((d.derivative - 1) // 2 + 1) * df | ||
|
||
error = np.linalg.norm(df_dx[s] - num_df_dx[s]) / np.linalg.norm(df_dx[s]) | ||
eoc.add_data_point(h, error) | ||
|
||
return eoc | ||
|
||
|
||
def test_finite_difference_taylor_stencil(*, visualize: bool = False) -> None: | ||
stencils = [ | ||
( | ||
make_taylor_approximation(1, (-2, 2)), | ||
np.array([1 / 12, -8 / 12, 0.0, 8 / 12, -1 / 12]), | ||
4, | ||
-1 / 30, | ||
), | ||
( | ||
make_taylor_approximation(1, (-2, 1)), | ||
np.array([1 / 6, -6 / 6, 3 / 6, 2 / 6]), | ||
3, | ||
1 / 12, | ||
), | ||
( | ||
make_taylor_approximation(1, (-1, 2)), | ||
np.array([-2 / 6, -3 / 6, 6 / 6, -1 / 6]), | ||
3, | ||
-1 / 12, | ||
), | ||
( | ||
make_taylor_approximation(2, (-2, 1)), | ||
np.array([0.0, 1.0, -2.0, 1.0]), | ||
2, | ||
1 / 12, | ||
), | ||
( | ||
make_taylor_approximation(2, (-2, 2)), | ||
np.array([-1 / 12, 16 / 12, -30 / 12, 16 / 12, -1 / 12]), | ||
4, | ||
-1 / 90, | ||
), | ||
( | ||
make_taylor_approximation(3, (-2, 2)), | ||
np.array([-1 / 2, 2 / 2, 0.0, -2 / 2, 1 / 2]), | ||
2, | ||
1 / 4, | ||
), | ||
( | ||
make_taylor_approximation(4, (-2, 2)), | ||
np.array([1.0, -4.0, 6.0, -4.0, 1.0]), | ||
2, | ||
1 / 6, | ||
), | ||
] | ||
|
||
if visualize: | ||
import matplotlib.pyplot as mp | ||
|
||
fig = mp.figure() | ||
|
||
for s, a, order, coefficient in stencils: | ||
logger.info("stencil:\n%r", s) | ||
|
||
assert np.allclose(np.sum(s.coeffs), 0.0) | ||
assert np.allclose(s.coeffs, np.array(a, dtype=s.coeffs.dtype)) | ||
assert np.allclose(s.trunc.error, coefficient) | ||
assert s.trunc.order == order | ||
|
||
eoc = finite_difference_convergence(s) | ||
logger.info("\n%s", eoc) | ||
assert eoc.estimated_order >= order - 0.25 | ||
|
||
if visualize: | ||
part = np.real if s.derivative % 2 == 0 else np.imag | ||
|
||
k = np.linspace(0.0, np.pi, 128) | ||
km = part(modified_wavenumber(s, k)) | ||
sign = part(1.0j**s.derivative) | ||
|
||
ax = fig.gca() | ||
ax.plot(k, km) | ||
ax.plot(k, sign * k**s.derivative, "k--") | ||
|
||
ax.set_xlabel("$k h$") | ||
ax.set_ylabel(r"$\tilde{k} h$") | ||
ax.set_xlim([0.0, np.pi]) | ||
ax.set_ylim([0.0, sign * np.pi**s.derivative]) | ||
|
||
dirname = pathlib.Path(__file__).parent | ||
filename = f"test_diff_fd_{s.derivative}_{s.trunc.order}" | ||
savefig(fig, dirname / filename) | ||
|
||
if visualize: | ||
mp.close(fig) | ||
|
||
a = np.array( | ||
[-0.02651995, 0.18941314, -0.79926643, 0.0, 0.79926643, -0.18941314, 0.02651995] | ||
) | ||
indices = np.arange(-3, 4) | ||
s = Stencil(derivative=1, coeffs=a, indices=indices) | ||
|
||
order, c = determine_stencil_truncation_error(s, atol=1.0e-6) | ||
assert order == 4 | ||
assert np.allclose(c, 0.01970656333333333) | ||
|
||
|
||
# }}} |