Training LunarLander in OpenAI Gym using A2C.
Following packages need to be installed: numpy
, matplotlib
, torch
and gym
$ python a2c_train.py [-h] [--env ENV] [--episodes EPISODES] [--hidden_size HIDDEN_SIZE] [--lr_actor LR_ACTOR]
[--lr_critic LR_CRITIC] [--discount DISCOUNT] [--seed SEED] [--outpath OUTPATH] [--save_video]
[--progress_step PROGRESS_STEP]
optional arguments:
-h, --help show this help message and exit
--env ENV Gym environment name (default: LunarLander-v2)
--episodes EPISODES Number of episodes to train (default: 400)
--hidden_size HIDDEN_SIZE
Size of hidden layers (default: 32)
--lr_actor LR_ACTOR Actor learning rate (default: 0.001)
--lr_critic LR_CRITIC
Critic learning rate (default: 0.001)
--discount DISCOUNT Discount factor (default: 0.99)
--seed SEED Random seed (default: 42)
--outpath OUTPATH Path to save results (default: ./results)
--save_video Saves video to outpath (default: False)
--progress_step PROGRESS_STEP
Print progress and save video after every given episodes (default: 10)