Skip to content

Commit

Permalink
llama: correct reverting of the entire batch.
Browse files Browse the repository at this point in the history
also updates `llama_kv_cache_find_slot`, will correctly count the number of `used` cells for recurrent models
  • Loading branch information
Xarbirus committed Nov 9, 2024
1 parent 0026c81 commit ee599f9
Showing 1 changed file with 64 additions and 58 deletions.
122 changes: 64 additions & 58 deletions src/llama.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2811,22 +2811,6 @@ struct llama_kv_cache {
}
};

// saves the kv_cache state for future recovery
// used to preserve the kv_cache state before searching for a slot
struct llama_kv_slot_restorer {
struct llama_kv_cache_state {
uint32_t head = 0;
uint32_t size = 0;
uint32_t used = 0;
uint32_t n = 0;
} old_state;

std::vector<llama_kv_cell> recurrent_cells; // for recurrent models only
std::pair<uint32_t, uint32_t> slot_boundaries; // for non-recurrent models only

bool restore = false;
};

struct llama_control_vector {
std::vector<struct ggml_tensor *> tensors; // per layer
std::vector<ggml_context_ptr> ctxs;
Expand Down Expand Up @@ -3522,21 +3506,24 @@ static bool llama_kv_cache_init(
// updates the cache head
// Note: On success, it's important that cache.head points
// to the first cell of the slot.
static bool llama_kv_cache_find_slot(
struct llama_kv_cache_slot_info {
std::pair<uint32_t, uint32_t> boundaries;
bool found = false;

explicit llama_kv_cache_slot_info(bool found_) : found{found_} {}
llama_kv_cache_slot_info(uint32_t begin, uint32_t end) : boundaries{begin, end}, found{true} {}

operator bool() const { return found; }
};
static const llama_kv_cache_slot_info llama_kv_cache_slot_info_failed{false};

static struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
struct llama_kv_cache & cache,
const struct llama_ubatch & batch,
struct llama_kv_slot_restorer * slot_restorer = nullptr) {
const struct llama_ubatch & batch) {
const uint32_t n_tokens = batch.n_tokens;
const uint32_t n_seqs = batch.n_seqs;
const uint32_t n_seq_tokens = batch.n_seq_tokens;

if (slot_restorer != nullptr) {
slot_restorer->old_state.head = cache.head;
slot_restorer->old_state.size = cache.size;
slot_restorer->old_state.used = cache.used;
slot_restorer->old_state.n = cache.n;
}

if (cache.recurrent) {
// For recurrent state architectures (like Mamba or RWKV),
// each cache cell can store the state for a whole sequence.
Expand All @@ -3545,11 +3532,6 @@ static bool llama_kv_cache_find_slot(
// can only process batches with an equal number of new tokens in each sequence
GGML_ASSERT(batch.equal_seqs);

if (slot_restorer != nullptr) {
slot_restorer->recurrent_cells = cache.cells;
slot_restorer->restore = true;
}

int32_t min = cache.size - 1;
int32_t max = 0;

Expand All @@ -3563,7 +3545,7 @@ static bool llama_kv_cache_find_slot(
// too big seq_id
// TODO: would it be possible to resize the cache instead?
LLAMA_LOG_ERROR("%s: seq_id=%d >= n_seq_max=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
return false;
return llama_kv_cache_slot_info_failed;
}
if (j > 0) {
llama_kv_cell & seq = cache.cells[seq_id];
Expand Down Expand Up @@ -3698,15 +3680,17 @@ static bool llama_kv_cache_find_slot(
// allow getting the range of used cells, from head to head + n
cache.head = min;
cache.n = max - min + 1;
cache.used = std::count_if(cache.cells.begin(), cache.cells.end(),
[](const llama_kv_cell& cell){ return !cell.is_empty(); });

// sanity check
return cache.n >= n_seqs;
return llama_kv_cache_slot_info(cache.n >= n_seqs);
}
// otherwise, one cell per token.

if (n_tokens > cache.size) {
LLAMA_LOG_ERROR("%s: n_tokens=%d > cache.size=%d\n", __func__, n_tokens, cache.size);
return false;
return llama_kv_cache_slot_info_failed;
}

uint32_t n_tested = 0;
Expand Down Expand Up @@ -3734,15 +3718,10 @@ static bool llama_kv_cache_find_slot(

if (n_tested >= cache.size) {
//LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
return false;
return llama_kv_cache_slot_info_failed;
}
}

if (slot_restorer != nullptr) {
slot_restorer->slot_boundaries = std::make_pair(cache.head, cache.head + n_tokens);
slot_restorer->restore = true;
}

for (uint32_t s = 0; s < n_seqs; s++) {
for (uint32_t i = 0; i < n_seq_tokens; ++i) {
uint32_t k = s*n_seq_tokens + i;
Expand All @@ -3756,7 +3735,7 @@ static bool llama_kv_cache_find_slot(

cache.used += n_tokens;

return true;
return llama_kv_cache_slot_info(cache.head, cache.head + n_tokens);
}

// find how many cells are currently in use
Expand Down Expand Up @@ -4032,22 +4011,47 @@ static uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams)
return cparams.flash_attn ? 256u : 32u;
}

static void llama_kv_cache_slot_restore(
const struct llama_kv_slot_restorer & restorer,
struct llama_kv_cache & cache) {
if (restorer.restore) {
cache.head = restorer.old_state.head;
cache.size = restorer.old_state.size;
cache.used = restorer.old_state.used;
cache.n = restorer.old_state.n;

if (cache.recurrent) {
cache.cells = restorer.recurrent_cells;
} else {
llama_kv_cache_seq_rm(cache, -1, restorer.slot_boundaries.first, restorer.slot_boundaries.second + 1);
// saves the kv_cache state for future recovery.
// used to rollback llama_kv_cache_find_slot changes.
struct llama_kv_slot_restorer {
struct llama_kv_cache_state {
uint32_t head = 0;
uint32_t n = 0;
} old_state;

std::vector<std::pair<uint32_t, uint32_t>> slot_boundaries; // for non-recurrent models only

bool do_restore = false;

explicit llama_kv_slot_restorer(const struct llama_kv_cache & cache) {
old_state.head = cache.head;
old_state.n = cache.n;
}

void save(const struct llama_kv_cache_slot_info& slot) {
if (slot) {
do_restore = true;
if (slot.boundaries.first != slot.boundaries.second) {
slot_boundaries.push_back(slot.boundaries);
}
}
}
}

void restore(struct llama_kv_cache & cache) {
if (do_restore) {
cache.head = old_state.head;
cache.n = old_state.n;

if (cache.recurrent) { // recurrent models like Mamba or RWKV can't have a state partially erased
llama_kv_cache_seq_rm(cache, -1, -1, -1);
} else {
for (auto & slot : slot_boundaries) {
llama_kv_cache_seq_rm(cache, -1, slot.first, slot.second);
}
}
}
}
};

//
// model loading and saving
Expand Down Expand Up @@ -17307,7 +17311,7 @@ static int llama_decode_internal(
lctx.n_queued_tokens += n_tokens_all;

auto & kv_self = lctx.kv_self;
llama_kv_slot_restorer kv_slot_restorer;
llama_kv_slot_restorer kv_slot_restorer(kv_self);

const int64_t n_embd = hparams.n_embd;
const int64_t n_vocab = hparams.n_vocab;
Expand Down Expand Up @@ -17392,9 +17396,11 @@ static int llama_decode_internal(
kv_self.head = 0;
}

if (!llama_kv_cache_find_slot(kv_self, ubatch, &kv_slot_restorer)) {
const auto slot = llama_kv_cache_find_slot(kv_self, ubatch);
if (!slot) {
return 1;
}
kv_slot_restorer.save(slot);

if (!kv_self.recurrent) {
// a heuristic, to avoid attending the full cache if it is not yet utilized
Expand Down Expand Up @@ -17443,7 +17449,7 @@ static int llama_decode_internal(

const auto compute_status = llama_graph_compute(lctx, gf, n_threads, threadpool);
if (compute_status != GGML_STATUS_SUCCESS) {
llama_kv_cache_slot_restore(kv_slot_restorer, kv_self);
kv_slot_restorer.restore(kv_self);
switch (compute_status) {
case GGML_STATUS_ABORTED:
return 2;
Expand Down

0 comments on commit ee599f9

Please sign in to comment.