Skip to content

X Education has appointed you to help them select the most promising leads, i.e. the leads that are most likely to convert into paying customers.

Notifications You must be signed in to change notification settings

SumitSatam/Lead_Scoring_Case_Study

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Lead_Scoring_Case_Study

Problem Statement

An education company named X Education sells online courses to industry professionals. On any given day, many professionals who are interested in the courses land on their website and browse for courses.

X Education has appointed you to help them select the most promising leads, i.e. the leads that are most likely to convert into paying customers. The company requires you to build a model wherein you need to assign a lead score to each of the leads such that the customers with higher lead score have a higher conversion chance and the customers with lower lead score have a lower conversion chance. The CEO, in particular, has given a ballpark of the target lead conversion rate to be around 80%.

Data

You have been provided with a leads dataset from the past with around 9000 data points. This dataset consists of various attributes such as Lead Source, Total Time Spent on Website, Total Visits, Last Activity, etc. which may or may not be useful in ultimately deciding whether a lead will be converted or not. The target variable, in this case, is the column ‘Converted’ which tells whether a past lead was converted or not wherein 1 means it was converted and 0 means it wasn’t converted. You can learn more about the dataset from the data dictionary provided in the zip folder at the end of the page. Another thing that you also need to check out for are the levels present in the categorical variables.

Goals of the Case Study

There are quite a few goals for this case study.

  1. Build a logistic regression model to assign a lead score between 0 and 100 to each of the leads which can be used by the company to target potential leads. A higher score would mean that the lead is hot, i.e. is most likely to convert whereas a lower score would mean that the lead is cold and will mostly not get converted.
  2. There are some more problems presented by the company which your model should be able to adjust to if the company's requirement changes in the future so you will need to handle these as well. These problems are provided in a separate doc file. Please fill it based on the logistic regression model you got in the first step. Also, make sure you include this in your final PPT where you'll make recommendations.

About

X Education has appointed you to help them select the most promising leads, i.e. the leads that are most likely to convert into paying customers.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published