This is a PyTorch Implementation of DCLNet " Disentangled Contour Learning for Quadrilateral Text Detection ".
ICDAR2017 MLT | Precision | Recall | F-score |
---|---|---|---|
DCLNet | 81.0 | 66.9 | 73.3 |
DCLNet* | 81.9 | 71.4 | 76.3 |
Only tested on
- Anaconda3
- python 3.7.1
- torch 1.2.0
- torchvision 0.4.0
- opencv-python 4.4.0.42
- easydict 1.9
Refer to LANMS
Refer to DCN in DBNet. Note that this repo puts dcn
in the model
dir.
git clone https://github.com/SakuraRiven/DCLNet.git
cd DCLNet
Make a new folder pths
and put the download pths into pths
mkdir pths
cd pths
mkdir backbone pretrain train
cd ..
mv resnet50-19c8e357.pth pths/backbone/
mv model_epoch_5.pth pths/pretrain/
mv model_epoch_150.pth pths/train/
Here is an example:
.
├── DCLNet
│ ├── model
│ │ └── dcn
│ └── pths
│ ├── backbone
│ ├── pretrain
│ └── train
└── data
├── ICDAR2017
│ ├── train_img
│ ├── train_gt
│ ├── valid_img
│ ├── valid_gt
│ └── test_img
└── SynthText
CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py pretrain
CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py finetune
CUDA_VISIBLE_DEVICES=0 python eval.py
CUDA_VISIBLE_DEVICES=0 python multi_scale_eval.py
CUDA_VISIBLE_DEVICES=0 python detect.py
Please cite the related works in your publications if it helps your research:
@inproceedings{bi2021disentangled,
title={Disentangled Contour Learning for Quadrilateral Text Detection},
author={Bi, Yanguang and Hu, Zhiqiang},
booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
pages={909--918},
year={2021}
}