Skip to content

Commit

Permalink
Misc lemmas (#465)
Browse files Browse the repository at this point in the history
* print mismatched names in Quote

* fix after review

* misc lemmas

* fix endings

* rename
  • Loading branch information
clayrat authored and jonsterling committed Nov 23, 2018
1 parent c95d1a0 commit bb0071b
Show file tree
Hide file tree
Showing 5 changed files with 87 additions and 0 deletions.
25 changes: 25 additions & 0 deletions library/basics/hedberg.red
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import prelude
import basics.retract
import data.void
import data.or

Expand Down Expand Up @@ -46,3 +47,27 @@ def paths-stable→set (A : type) (st : (x y : A) → stable (path A x y)) : is-
-- Hedberg's theorem for decidable path types
def discrete→set (A : type) (d : discrete A) : is-set A =
paths-stable→set A (λ x y → dec→stable (path A x y) (d x y))

def hrel/set-equiv
(A : type) (R : A → A → type)
(R/prop : (x y : A) → is-prop (R x y))
(R/refl : (x : A) → R x x)
(R/id : (x y : A) → R x y → path A x y)
: (is-set A) × ((x y : A) → equiv (R x y) (path A x y))
=
let eq = path-retract/equiv A R (λ a b →
( R/id a b
, λ p → coe 0 1 (R/refl a) in λ j → R a (p j)
, λ rab → R/prop a b (coe 0 1 (R/refl a) in λ j → R a (R/id a b rab j)) rab
)) in
( λ x y → coe 0 1 (R/prop x y) in λ j → is-prop (ua _ _ (eq x y) j)
, eq
)

-- Hedberg's theorem is a corollary of above
def paths-stable→set/alt (A : type) (st : (x y : A) → stable (path A x y)) : is-set A =
(hrel/set-equiv A (λ x y → neg (neg (path A x y)))
(λ x y → neg/prop (neg (path A x y)))
(λ _ np → np refl)
st
).fst
18 changes: 18 additions & 0 deletions library/paths/bool.red
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@ import data.void
import data.unit
import data.bool
import basics.isotoequiv
import basics.hedberg

def bool-path/code : bool → bool → type =
elim [
Expand All @@ -24,3 +25,20 @@ def not/equiv : equiv bool bool =

def not/path : path^1 type bool bool =
ua _ _ not/equiv

def bool/discrete : discrete bool =
elim [
| tt →
elim [
| tt → inl refl
| ff → inr (not/neg ff)
]
| ff →
elim [
| tt → inr (not/neg tt)
| ff → inl refl
]
]

def bool/set : is-set bool =
discrete→set bool bool/discrete
8 changes: 8 additions & 0 deletions library/paths/hlevel.red
Original file line number Diff line number Diff line change
@@ -1,7 +1,15 @@
import prelude
import data.unit
import basics.isotoequiv
import paths.sigma
import paths.pi

def prop/unit (A : type) (A/prop : is-prop A) (x0 : A) : equiv A unit =
iso→equiv A unit (λ _ → ★, λ _ → x0, unit/prop ★, A/prop x0)

def prop/equiv (P Q : type) (P/prop : is-prop P) (Q/prop : is-prop Q) (f : P → Q) (g : Q → P) : equiv P Q =
iso→equiv P Q (f, g, λ p → Q/prop (f (g p)) p, λ q → P/prop (g (f q)) q)

def contr-equiv (A B : type) (A/contr : is-contr A) (B/contr : is-contr B)
: equiv A B
=
Expand Down
22 changes: 22 additions & 0 deletions library/paths/sigma.red
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,28 @@ import prelude
import basics.isotoequiv
import basics.retract

def sigma/assoc (A : type) (B : A → type) (C : ((x : A) × B x) → type)
: equiv ((x : A) × (y : B x) × C (x, y)) ((p : ((x : A) × B x)) × C p)
=
( λ x → ((x.fst, x.snd.fst), x.snd.snd)
, λ b → ( ((b.fst.fst, b.fst.snd, b.snd), refl)
, λ c i →
( ((c.snd i).fst.fst, (c.snd i).fst.snd, (c.snd i).snd)
, λ j → weak-connection/or _ (c.snd) i j
)
)
)

def sigma/contr/equiv/fst (A : type) (P : A → type) (P/contr : (x : A) → is-contr (P x))
: equiv ((x : A) × P x) A
=
iso→equiv ((x : A) × P x) A
( λ s → s.fst
, λ x → (x, (P/contr x).fst)
, refl
, λ s i → (s.fst, symm _ ((P/contr (s.fst)).snd (s.snd)) i)
)

def sigma/path (A : type) (B : A → type) (a : A) (b : B a) (a' : A) (b' : B a')
: equiv ((p : path A a a') × pathd (λ i → B (p i)) b b') (path ((a : A) × B a) (a,b) (a',b'))
=
Expand Down
14 changes: 14 additions & 0 deletions library/paths/truncation.red
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
import prelude
import basics.isotoequiv
import data.truncation
import paths.hlevel

def prop/trunc (A : type) (A/prop : is-prop A) : equiv A (trunc A) =
prop/equiv _ _ A/prop (trunc/prop A)
(λ x → ret x) (elim [ ret a → a | glue (x → x/ih) (y → y/ih) i → A/prop x/ih y/ih i ])

def unique-choice (A : type) (P : A → type)
(P/prop : (x : A) → is-prop (P x)) (P/trunc : (x : A) → trunc (P x))
: (x : A) → P x
=
λ x → coe 0 1 (P/trunc x) in symm^1 _ (ua _ _ (prop/trunc (P x) (P/prop x)))

0 comments on commit bb0071b

Please sign in to comment.