We used these datasets to train a CNN and an MLP.
Testing Set Count | Training Set Count | Category |
18118 | 72471 | Category - N |
556 | 2223 | Category - S |
1448 | 5788 | Category - V |
162 | 641 | Category - F |
1608 | 6431 | Category - Q |
Samples Count: 109446
Categories Count: 5
Sampling Frequency: 125Hz
Data Source: Physionet's MIT-BIH Arrhythmia Dataset
Categories:
- N : Non-ecotic beats (normal beat)
- S : Supraventricular ectopic beats
- V : Ventricular ectopic beats
- F : Fusion Beats
- Q : Unknown Beats
4046 | Normal |
10506 | Abnormal |
Samples Count: 14552
Categories Count: 2
Sampling Frequency: 125Hz
Data Source: Physionet's PTB Diagnostic Database
We used Fourier method to generate more signals so all the categories are of the same size.
Layer (type) | Output Shape | #Param | Activation Function |
Conv1D-64/7 (Conv1D) | (None, 181, 64) | 512 | ReLU |
SD1D-0.4 (SpatialDropout1D) | (None, 181, 64) | 0 | - |
BN-1 (BatchNormalization) | (None, 181, 64) | 256 | - |
MP1D-7 (MaxPooling1D) | (None, 25, 64) | 0 | - |
Conv1D-32/5 (Conv1D) | (None, 21, 32) | 10272 | ReLU |
BN-2 (BatchNormalization) | (None, 21, 32) | 128 | - |
MP1D-5 (MaxPooling1D) | (None, 4, 32) | 0 | - |
GMP1D (GlobalMaxPooling1D) | (None, 32) | 0 | - |
Output (Dense) | (None, 5) | 165 | Softmax / Sigmoid |
Total params: 11,333 | |||
Trainable params: 11,141 | |||
Non-trainable params: 192 |
Layer (type) | Output Shape | #Param | Activation Function |
Dense-64 (Dense) | (None, 64) | 12032 | ReLU |
Dropout-0.25 (Dropout) | (None, 64) | 0 | - |
Dense-32 (Dense) | (None, 32) | 2080 | ReLU |
Dense-16 (Dense) | (None, 16) | 528 | ReLU |
Output (Dense) | (None, 5) | 85 | Softmax |
Total params: 14,725 | |||
Trainable params: 14,725 | |||
Non-trainable params: 0 |
Precision | Recall | f1-score | Support | |
Category-N | 0.98 | 0.98 | 0.98 | 18118 |
Category-S | 0.73 | 0.60 | 0.65 | 556 |
Category-V | 0.94 | 0.91 | 0.93 | 1448 |
Category-F | 0.49 | 0.85 | 0.62 | 162 |
Category-Q | 0.96 | 0.99 | 0.97 | 1608 |
Accuracy | 0.9658322930335999 | 21892 | ||
Loss | 0.13102902472019196 | 21892 | ||
Macro Avg | 0.82 | 0.86 | 0.83 | 21892 |
Weighted Avg | 0.97 | 0.97 | 0.97 | 21892 |
Precision | Recall | f1-score | Support | |
Normal | 0.97 | 0.99 | 0.98 | 818 |
Abnormal | 1.00 | 0.99 | 0.99 | 2093 |
Accuracy | 0.9900377988815308 | 2911 | ||
Loss | 0.0375625379383564 | 2911 | ||
Macro Avg | 0.99 | 0.99 | 0.99 | 2911 |
Weighted Avg | 0.99 | 0.99 | 0.99 | 2911 |
Precision | Recall | f1-score | Support | |
Category-N | 0.97 | 0.99 | 0.98 | 18118 |
Category-S | 0.76 | 0.60 | 0.67 | 556 |
Category-V | 0.93 | 0.84 | 0.88 | 1448 |
Category-F | 0.72 | 0.64 | 0.68 | 162 |
Category-Q | 0.98 | 0.92 | 0.95 | 1608 |
Accuracy | 0.9611730575561523 | 21892 | ||
Loss | 0.15909039974212646 | 21892 | ||
Macro Avg | 0.87 | 0.80 | 0.83 | 21892 |
Weighted Avg | 0.96 | 0.96 | 0.96 | 21892 |
Precision | Recall | f1-score | Support | |
Normal | 0.93 | 0.94 | 0.94 | 818 |
Abnormal | 0.98 | 0.97 | 0.97 | 2093 |
Accuracy | 0.9639298915863037 | 2911 | ||
Loss | 0.12964512407779694 | 2911 | ||
Macro Avg | 0.95 | 0.96 | 0.96 | 2911 |
Weighted Avg | 0.96 | 0.96 | 0.96 | 2911 |