-
Notifications
You must be signed in to change notification settings - Fork 13
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
221 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,221 @@ | ||
import DPFEHM | ||
import PyPlot | ||
import Zygote | ||
import GaussianRandomFields | ||
import Optim | ||
import NonlinearEquations | ||
import ChainRulesCore | ||
import SparseArrays | ||
using LinearAlgebra | ||
using AlgebraicMultigrid | ||
using IterativeSolvers | ||
|
||
function cg_solver(A, b; kwargs...) | ||
##for amg solver | ||
# ml = AlgebraicMultigrid.ruge_stuben(A) | ||
# # hfree = AlgebraicMultigrid._solve(ml, b; kwargs...) | ||
# hfree =IterativeSolvers.cg(A, b; kwargs...) | ||
hfree =A\b # BackSlash | ||
return hfree | ||
end | ||
function getfreenodes(n, dirichletnodes) | ||
isfreenode = [i ∉ dirichletnodes for i in 1:n] | ||
nodei2freenodei = [isfreenode[i] ? sum(isfreenode[1:i]) : -1 for i in 1:n] | ||
freenodei2nodei = [i for i in 1:n if isfreenode[i]] | ||
return isfreenode, nodei2freenodei, freenodei2nodei | ||
end | ||
# Macro for the governing equations of two phase flow pressure. It calculates residuals and jacobian matrix automatically | ||
@NonlinearEquations.equations exclude=( neighbors, areasoverlengths) function transmissivity2d(h,Ks_neighbors,neighbors,areasoverlengths,dirichletnodes,dirichleths,Qs) | ||
isfreenode, nodei2freenodei, = getfreenodes(length(Qs), dirichletnodes) | ||
dirichletnodes=[] | ||
NonlinearEquations.setnumequations(sum(isfreenode)) | ||
tx = 2*areasoverlengths; | ||
for i = 1:length(Qs) | ||
if isfreenode[i] | ||
j = nodei2freenodei[i] | ||
NonlinearEquations.addterm(j, Qs[i]) | ||
end | ||
end | ||
for (i, (node_a, node_b)) in enumerate(neighbors) | ||
for (node1, node2) in [(node_a, node_b), (node_b, node_a)] | ||
j1 = nodei2freenodei[node1] | ||
if isfreenode[node1] && isfreenode[node2] | ||
j2 = nodei2freenodei[node2] | ||
NonlinearEquations.addterm(j1, (h[j1] - h[j2]) *(tx[i]/Ks_neighbors[i])) | ||
end | ||
end | ||
end | ||
end | ||
function Solve_Pres(Ks_neighbors, neighbors, areasoverlengths, dirichletnodes, dirichleths, Qs, Addterm, kwargs...) | ||
isfreenode, nodei2freenodei, freenodei2nodei = getfreenodes(length(Qs), dirichletnodes) | ||
args = (zeros(sum(isfreenode)), Ks_neighbors, neighbors, areasoverlengths, dirichletnodes, dirichleths, Qs) | ||
A = transmissivity2d_h(args...) | ||
b= transmissivity2d_residuals(args...) | ||
A[1,1] = A[1,1]+ Addterm | ||
hfree=cg_solver(A, b; kwargs...) | ||
h = map(i->isfreenode[i] ? hfree[nodei2freenodei[i]] : dirichleths[i], 1:length(Qs)) | ||
return h | ||
end | ||
function ChainRulesCore.rrule(::typeof(Solve_Pres), Ks_neighbors, neighbors,areasoverlengths,dirichletnodes,dirichleths,Qs, Addterm; kwargs...) | ||
isfreenode, nodei2freenodei, freenodei2nodei = getfreenodes(length(Qs), dirichletnodes) | ||
args_noh = (zeros(sum(isfreenode)), Ks_neighbors, neighbors, areasoverlengths,dirichletnodes,dirichleths,Qs) | ||
A = transmissivity2d_h(args_noh...) | ||
b= transmissivity2d_residuals(args_noh...) | ||
A[1,1] = A[1,1]+ Addterm | ||
hfree=cg_solver(A, b; kwargs...) | ||
h = map(i->isfreenode[i] ? hfree[nodei2freenodei[i]] : dirichleths[i], 1:length(Qs)) | ||
function pullback(delta) | ||
args = (h, Ks_neighbors, neighbors, areasoverlengths, dirichletnodes, dirichleths, Qs) | ||
lambda=cg_solver(A', delta[isfreenode]; kwargs...) | ||
trans_Ks = transmissivity2d_Ks_neighbors(args...) | ||
trans_dirichleths = transmissivity2d_dirichleths(args...) | ||
trans_Qs = transmissivity2d_Qs(args...) | ||
return (ChainRulesCore.NoTangent(),#step function | ||
@ChainRulesCore.thunk(-(trans_Ks' * lambda)),#Ks | ||
@ChainRulesCore.thunk(ChainRulesCore.NoTangent()),#neighbors | ||
@ChainRulesCore.thunk(ChainRulesCore.NoTangent()),#areasoverlengths | ||
@ChainRulesCore.thunk(ChainRulesCore.NoTangent()),#dirichletnodes | ||
@ChainRulesCore.thunk(-(trans_dirichleths' * lambda) .+ delta .* (map(x->!x, isfreenode))),#dirichleths | ||
@ChainRulesCore.thunk(-(trans_Qs' * lambda)),#Qs | ||
@ChainRulesCore.thunk(ChainRulesCore.NoTangent()))#@ChainRulesCore.thunk(ChainRulesCore.NoTangent()) | ||
end | ||
return h, pullback | ||
end | ||
#Macro for the governing equations of two phase flow saturation. It calculates residuals and jacobian matrix automatically | ||
@NonlinearEquations.equations exclude=(neighbors, areasoverlengths,) function saturation2d(f, Qs, neighbors, areasoverlengths,P, Vn,dirichletnodes) | ||
dirichletnodes=[] | ||
isfreenode, nodei2freenodei, = getfreenodes(length(Qs), dirichletnodes) | ||
NonlinearEquations.setnumequations(length(Qs)) | ||
fp=min.(Qs,0) | ||
for j = 1:length(Qs) | ||
NonlinearEquations.addterm(j, fp[j] * f[j]) | ||
end | ||
for (i, (node_a, node_b)) in enumerate(neighbors) | ||
for (node1, node2) in [(node_a, node_b), (node_b, node_a)] | ||
j1 = nodei2freenodei[node1] | ||
if isfreenode[node1] && isfreenode[node2] | ||
j2 = nodei2freenodei[node2] | ||
upwind = (P[j2]-P[j1] >= 0) | ||
if upwind | ||
if Vn[i]>0 | ||
NonlinearEquations.addterm(j1,(f[j2])*(Vn[i])) | ||
else | ||
NonlinearEquations.addterm(j1,-(f[j2])*(Vn[i])) | ||
end | ||
else | ||
if Vn[i]>0 | ||
NonlinearEquations.addterm(j1,-(f[j1])*(Vn[i])) | ||
else | ||
NonlinearEquations.addterm(j1,(f[j1])*(Vn[i])) | ||
end | ||
end | ||
end | ||
end | ||
end | ||
|
||
end | ||
""" | ||
`make_saturation2d_pullback(args...)` | ||
Return a pullback function for `saturation2d_residuals`. The arguments are the same as for `saturation2d_residuals` | ||
""" | ||
function make_saturation2d_pullback(args...) | ||
function saturation2d_pullback(delta) | ||
retval = (ChainRulesCore.NoTangent(),#function | ||
@ChainRulesCore.thunk(saturation2d_f(args...)' * delta),#f | ||
@ChainRulesCore.thunk(saturation2d_Qs(args...)' * delta),#Qs | ||
ChainRulesCore.NoTangent(),#neighbors | ||
ChainRulesCore.NoTangent(),#areasoverlengths | ||
@ChainRulesCore.thunk(saturation2d_P(args...)' * delta),#P | ||
@ChainRulesCore.thunk(saturation2d_Vn(args...)' * delta),#Vn | ||
ChainRulesCore.NoTangent())#dirichletnodes | ||
return retval | ||
end | ||
return saturation2d_pullback | ||
end | ||
function ChainRulesCore.rrule(::typeof(saturation2d_residuals),f, Qs, neighbors, areasoverlengths,P, Vn, dirichletnodes) | ||
args = (f, Qs, neighbors, areasoverlengths,P, Vn, dirichletnodes) | ||
residuals = saturation2d_residuals(args...) | ||
pullback = make_saturation2d_pullback(args...) | ||
return residuals, pullback | ||
end | ||
#function to implement two point flux approximation. Calculates pressure and darcy velocity | ||
function TPFA_unstructured(Ks,dirichleths, dirichletnodes, Qs,areasoverlengths,neighbors) | ||
L = Ks.^(-1); | ||
Ks2Ks_neighbors(Ks) = ( (Ks[map(p->p[1], neighbors)] .+ Ks[map(p->p[2], neighbors)])) | ||
Ks_neighbors = Ks2Ks_neighbors(L) | ||
Addterm=sum(diagm(Ks)) | ||
P=Solve_Pres(Ks_neighbors, neighbors, areasoverlengths, dirichletnodes, dirichleths, Qs,Addterm) | ||
tx = 2*areasoverlengths; | ||
P_diff_neighbors(P) = ((P[map(p->p[1], neighbors)] .- P[map(p->p[2], neighbors)])) | ||
P_n = P_diff_neighbors(P) | ||
Vn = [P_n[i] * (tx[i] / Ks_neighbors[i]) for i in 1:length(neighbors)] | ||
return P, Vn | ||
end | ||
#function to calculate total mobility, which accounts the relative permeability | ||
function RelPerm(s,fluid) | ||
S = (s.-fluid.swc)/(1-fluid.swc-fluid.sor); Mw = S.^2/fluid.vw; | ||
Mo =(1 .- S).^2/fluid.vo; | ||
return Mw, Mo | ||
end | ||
#function to calculate saturation using the pressure. Convergence is assured by CFL condition | ||
function Upstream( S, fluid, Qs, T, P,Vn,neighbors,volumes,areasoverlengths,dirichletnodes) | ||
porosity = ones(size(volumes)) | ||
pv = volumes .* porosity[:]; | ||
fi = max.(Qs, 0) | ||
# Compute the minimum pore volume / velocity ratio for all cells | ||
Vi = zeros(length(pv)) # Total velocity (flux) for each cell | ||
for (i, (node_a, node_b)) in enumerate(neighbors) | ||
if Vn[i]<0 | ||
Vi-=Float64.(([cval == node_a for cval in 1:length(Vi)]).*(Vn[i])) | ||
else | ||
Vi+=Float64.(([cval == node_b for cval in 1:length(Vi)]).*(Vn[i])) | ||
end | ||
end | ||
pm = minimum(pv ./ (Vi + fi)) # 1e-8 is for handling NAN | ||
# CFL time step based on saturation upstreaming | ||
cfl = ((1 - fluid.swc - fluid.sor) / 3) * pm | ||
Nts = ceil(Int, T/cfl) # Number of time steps | ||
dtx = (T / Nts) ./ pv # Time step for each cell | ||
return time_evolution(S, dtx, Qs, Nts, P,Vn,fluid,neighbors,areasoverlengths,dirichletnodes) | ||
end | ||
# functions to solve the saturation equation recursively | ||
function time_evolution(S, dt, Qs, Nts,P,Vn,fluid,neighbors,areasoverlengths,dirichletnodes) | ||
if Nts == 0 | ||
return S | ||
else | ||
return time_evolution(one_step(S, dt, Qs, P,Vn,fluid,neighbors,areasoverlengths, dirichletnodes), dt, Qs, Nts - 1,P, Vn,fluid,neighbors,areasoverlengths,dirichletnodes) | ||
end | ||
end | ||
function one_step(S, dt, Qs, P,Vn,fluid,neighbors, areasoverlengths, dirichletnodes) | ||
mw, mo = RelPerm(S, fluid) | ||
f = mw ./ (mw + mo) | ||
fi = max.(Qs,0).*dt | ||
return S = S + saturation2d_residuals(f, Qs, neighbors, areasoverlengths,P, Vn , dirichletnodes) .* dt + fi ; | ||
end | ||
function solveTwoPhase(args...) | ||
h0, S0, K,dirichleths, dirichletnodes, Qs, volumes, areasoverlengths, fluid, dt, neighbors, nt, everyStep =args | ||
if everyStep | ||
P_data = [] | ||
S_data = [] | ||
end | ||
S = S0 | ||
P = h0 | ||
for t =1:nt | ||
Mw, Mo = RelPerm(S, fluid) | ||
Mt = Mw .+ Mo | ||
Km=Mt.*K | ||
P, Vn = TPFA_unstructured(Km,dirichleths, dirichletnodes, Qs, areasoverlengths,neighbors) | ||
S = Upstream(S, fluid, Qs, dt, P, Vn, neighbors, volumes,areasoverlengths,dirichletnodes) | ||
if everyStep | ||
@show t,sum(S),sum(P) | ||
push!(P_data, deepcopy(P)) | ||
push!(S_data, deepcopy(S)) | ||
end | ||
end | ||
if everyStep | ||
return P_data, S_data | ||
else | ||
return P, S #Return the results from the last | ||
end | ||
end | ||
|