This is an implementation of a graph NAS method with Monte-Carlo tree search.
- python=3.9
- CUDA11.1
- pytorch=1.9.0
- torchvision=0.10.0
python3 main.py -train_size $train_size -val_size $val_size -test_size $test_size -epoch $epoch -dataset_name $dataset_name
$train_size
set train data size$val_size
set validation data size$test_size
set test data size$epoch
set the number of epochs$dataset_name
set the detaset name$num_models
set the number of architectures$search threshold
set the visit times to generate child nodes$mcts_score_sqrt
set c of ucs$eval_type
set the mode of search algorithm (max or avg)$eval_mode
set the mode of evaluation (acc or auc)
ex) python3 main.py -train_size 0.6 -val_size 0.2 -test_size 0.2 -epoch 500 -trial 5 -num_models 1000 -search_threshold 10 -mcts_score_sqrt 2 -eval_type avg -eval_mode acc -dataset_name cora
CSV files are generated at results directory.