Skip to content

[MICCAI 2024] Cellular Automata for Tumor Development - Realistic Synthetic Tumors in Liver, Pancreas, and Kidney

License

Notifications You must be signed in to change notification settings

MrGiovanni/Pixel2Cancer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Pixel2Cancer

Cellular Automata in Computed Tomography


Follow on Twitter

This repository provides the code and checkpoints for our novel tumor synthesis approach, Pixel2Cancer, which can simulate tumor development within organs with realistic texture, shape, and interactions with other tissues.

Simulation of Tumor Growth

Paper

From Pixel to Cancer: Cellular Automata in Computed Tomography
Yuxiang Lai1,2, Xiaoxi Chen3, Angtian Wang1, Alan L. Yuille1, and Zongwei Zhou1,*
1 Johns Hopkins University
2 Southeast University,
3 University of Illinois Urbana-Champaign
International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2024; Early Accept)
paper | code

We have summarized publications related to tumor synthesis in Awesome Synthetic Tumors Awesome.

Model

Organ Tumor Model Pre-trained? Download
liver real unet no link
liver real swin_unetrv2_base no link
liver synt unet no link
liver synt swin_unetrv2_base no link
pancreas real unet no link
pancreas real swin_unetrv2_base no link
pancreas synt unet no link
pancreas synt swin_unetrv2_base no link
kidney real unet no link
kidney real swin_unetrv2_base no link
kidney synt unet no link
kidney synt swin_unetrv2_base no link

You can download other materials from these links:

All other checkpoints: link

Data: Liver (link), Kidney (link), Pancreas (link)

0. Installation

git clone https://github.com/MrGiovanni/Pixel2Cancer.git
cd Pixel2Cancer/
# download pre-trained models
wget https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/model_swinvit.pt

See installation instructions to create an environment and obtain requirements.

1. Train segmentation models using synthetic tumors

datapath=/mnt/zzhou82/PublicAbdominalData/

# UNET (no.pretrain)
CUDA_VISIBLE_DEVICES=0,1,2,3 python -W ignore main.py --optim_lr=4e-4 --batch_size=2 --lrschedule=warmup_cosine --optim_name=adamw --model_name=unet --val_every=200 --max_epochs=2000 --save_checkpoint --workers=0 --noamp --distributed --dist-url=tcp://127.0.0.1:12235 --cache_num=200 --val_overlap=0.5 --syn --logdir="runs/synt.no_pretrain.unet" --train_dir $datapath --val_dir $datapath --json_dir datafolds/healthy.json

# Swin-UNETR-Base (pretrain)
CUDA_VISIBLE_DEVICES=0,1,2,3 python -W ignore main.py --optim_lr=4e-4 --batch_size=2 --lrschedule=warmup_cosine --optim_name=adamw --model_name=swin_unetrv2 --swin_type=base --val_every=200 --max_epochs=2000 --save_checkpoint --workers=0 --noamp --distributed --dist-url=tcp://127.0.0.1:12231 --cache_num=200 --val_overlap=0.5 --syn --logdir="runs/synt.pretrain.swin_unetrv2_base" --train_dir $datapath --val_dir $datapath --json_dir datafolds/healthy.json --use_pretrained

# Swin-UNETR-Base (no.pretrain)
CUDA_VISIBLE_DEVICES=0,1,2,3 python -W ignore main.py --optim_lr=4e-4 --batch_size=2 --lrschedule=warmup_cosine --optim_name=adamw --model_name=swin_unetrv2 --swin_type=base --val_every=200 --max_epochs=2000 --save_checkpoint --workers=0 --noamp --distributed --dist-url=tcp://127.0.0.1:12231 --cache_num=200 --val_overlap=0.5 --syn --logdir="runs/synt.no_pretrain.swin_unetrv2_base" --train_dir $datapath --val_dir $datapath --json_dir datafolds/healthy.json

# Swin-UNETR-Small (no.pretrain)
CUDA_VISIBLE_DEVICES=0,1,2,3 python -W ignore main.py --optim_lr=4e-4 --batch_size=2 --lrschedule=warmup_cosine --optim_name=adamw --model_name=swin_unetrv2 --swin_type=small --val_every=200 --max_epochs=2000 --save_checkpoint --workers=0 --noamp --distributed --dist-url=tcp://127.0.0.1:12233 --cache_num=200 --val_overlap=0.5 --syn --logdir="runs/synt.no_pretrain.swin_unetrv2_small" --train_dir $datapath --val_dir $datapath --json_dir datafolds/healthy.json

# Swin-UNETR-Tiny (no.pretrain)
CUDA_VISIBLE_DEVICES=0,1,2,3 python -W ignore main.py --optim_lr=4e-4 --batch_size=2 --lrschedule=warmup_cosine --optim_name=adamw --model_name=swin_unetrv2 --swin_type=tiny --val_every=200 --max_epochs=2000 --save_checkpoint --workers=0 --noamp --distributed --dist-url=tcp://127.0.0.1:12234 --cache_num=200 --val_overlap=0.5 --syn --logdir="runs/synt.no_pretrain.swin_unetrv2_tiny" --train_dir $datapath --val_dir $datapath --json_dir datafolds/healthy.json

2. Train segmentation models using real tumors (for comparison)

datapath=/mnt/zzhou82/PublicAbdominalData/

# UNET (no.pretrain)
CUDA_VISIBLE_DEVICES=0,1,2,3 python -W ignore -W ignore main.py --optim_lr=4e-4 --batch_size=2 --lrschedule=warmup_cosine --optim_name=adamw --model_name=unet --val_every=200 --val_overlap=0.5 --max_epochs=2000 --save_checkpoint --workers=2 --noamp --distributed --dist-url=tcp://127.0.0.1:12235 --cache_num=200 --logdir="runs/real.no_pretrain.unet" --train_dir $datapath --val_dir $datapath --json_dir datafolds/lits.json

# Swin-UNETR-Base (pretrain)
CUDA_VISIBLE_DEVICES=0,1,2,3 python -W ignore -W ignore main.py --optim_lr=4e-4 --batch_size=2 --lrschedule=warmup_cosine --optim_name=adamw --model_name=swin_unetrv2 --swin_type=base --val_every=200 --val_overlap=0.5 --max_epochs=2000 --save_checkpoint --workers=2 --noamp --distributed --dist-url=tcp://127.0.0.1:12231 --cache_num=200 --logdir="runs/real.pretrain.swin_unetrv2_base" --train_dir $datapath --val_dir $datapath --json_dir datafolds/lits.json --use_pretrained

# Swin-UNETR-Base (no.pretrain)
CUDA_VISIBLE_DEVICES=0,1,2,3 python -W ignore -W ignore main.py --optim_lr=4e-4 --batch_size=2 --lrschedule=warmup_cosine --optim_name=adamw --model_name=swin_unetrv2 --swin_type=base --val_every=200 --val_overlap=0.5 --max_epochs=2000 --save_checkpoint --workers=2 --noamp --distributed --dist-url=tcp://127.0.0.1:12232 --cache_num=200 --logdir="runs/real.no_pretrain.swin_unetrv2_base" --train_dir $datapath --val_dir $datapath --json_dir datafolds/lits.json

# Swin-UNETR-Small (no.pretrain)
CUDA_VISIBLE_DEVICES=0,1,2,3 python -W ignore -W ignore main.py --optim_lr=4e-4 --batch_size=2 --lrschedule=warmup_cosine --optim_name=adamw --model_name=swin_unetrv2 --swin_type=small --val_every=200 --val_overlap=0.5 --max_epochs=2000 --save_checkpoint --workers=2 --noamp --distributed --dist-url=tcp://127.0.0.1:12233 --cache_num=200 --logdir="runs/real.no_pretrain.swin_unetrv2_small" --train_dir $datapath --val_dir $datapath --json_dir datafolds/lits.json

# Swin-UNETR-Tiny (no.pretrain)
CUDA_VISIBLE_DEVICES=0,1,2,3 python -W ignore -W ignore main.py --optim_lr=4e-4 --batch_size=2 --lrschedule=warmup_cosine --optim_name=adamw --model_name=swin_unetrv2 --swin_type=tiny --val_every=200 --val_overlap=0.5 --max_epochs=2000 --save_checkpoint --workers=2 --noamp --distributed --dist-url=tcp://127.0.0.1:12234 --cache_num=200 --logdir="runs/real.no_pretrain.swin_unetrv2_tiny" --train_dir $datapath --val_dir $datapath --json_dir datafolds/lits.json

3. Evaluation

AI model trained by synthetic tumors

datapath=/mnt/zzhou82/PublicAbdominalData/

# UNET (no.pretrain)
CUDA_VISIBLE_DEVICES=0 python -W ignore validation.py --model=unet --val_overlap=0.75 --val_dir $datapath --json_dir datafolds/lits.json --log_dir runs/synt.no_pretrain.unet --save_dir out
# Swin-UNETR-Base (pretrain)
CUDA_VISIBLE_DEVICES=0 python -W ignore validation.py --model=swin_unetrv2 --swin_type=base --val_overlap=0.75 --val_dir $datapath --json_dir datafolds/lits.json --log_dir runs/synt.pretrain.swin_unetrv2_base --save_dir out
# Swin-UNETR-Base (no.pretrain)
CUDA_VISIBLE_DEVICES=0 python -W ignore validation.py --model=swin_unetrv2 --swin_type=base --val_overlap=0.75 --val_dir $datapath --json_dir datafolds/lits.json --log_dir runs/synt.no_pretrain.swin_unetrv2_base --save_dir out
# Swin-UNETR-Small (no.pretrain)
CUDA_VISIBLE_DEVICES=0 python -W ignore validation.py --model=swin_unetrv2 --swin_type=small --val_overlap=0.75 --val_dir $datapath --json_dir datafolds/lits.json --log_dir runs/synt.no_pretrain.swin_unetrv2_small --save_dir out
# Swin-UNETR-Tiny (no.pretrain)
CUDA_VISIBLE_DEVICES=0 python -W ignore validation.py --model=swin_unetrv2 --swin_type=tiny --val_overlap=0.75 --val_dir $datapath --json_dir datafolds/lits.json --log_dir runs/synt.no_pretrain.swin_unetrv2_tiny --save_dir out

AI model trained by real tumors

datapath=/mnt/zzhou82/PublicAbdominalData/

# UNET (no.pretrain)
CUDA_VISIBLE_DEVICES=0 python -W ignore validation.py --model=unet --val_overlap=0.75 --val_dir $datapath --json_dir datafolds/lits.json --log_dir runs/real.no_pretrain.unet --save_dir out
# Swin-UNETR-Base (pretrain)
CUDA_VISIBLE_DEVICES=0 python -W ignore validation.py --model=swin_unetrv2 --swin_type=base --val_overlap=0.75 --val_dir $datapath --json_dir datafolds/lits.json --log_dir runs/real.pretrain.swin_unetrv2_base --save_dir out
# Swin-UNETR-Base (no.pretrain)
CUDA_VISIBLE_DEVICES=0 python -W ignore validation.py --model=swin_unetrv2 --swin_type=base --val_overlap=0.75 --val_dir $datapath --json_dir datafolds/lits.json --log_dir runs/real.no_pretrain.swin_unetrv2_base --save_dir out
# Swin-UNETR-Small (no.pretrain)
CUDA_VISIBLE_DEVICES=0 python -W ignore validation.py --model=swin_unetrv2 --swin_type=small --val_overlap=0.75 --val_dir $datapath --json_dir datafolds/lits.json --log_dir runs/real.no_pretrain.swin_unetrv2_small --save_dir out
# Swin-UNETR-Tiny (no.pretrain)
CUDA_VISIBLE_DEVICES=0 python -W ignore validation.py --model=swin_unetrv2 --swin_type=tiny --val_overlap=0.75 --val_dir $datapath --json_dir datafolds/lits.json --log_dir runs/real.no_pretrain.swin_unetrv2_tiny --save_dir out

Data Setting

Train on 9k data of AbdominalAtlas1.1:

The release of AbdomenAtlas 1.0 can be found at https://huggingface.co/datasets/AbdomenAtlas/AbdomenAtlas_1.0_Mini

# AbdominalAtlas1.1 training data list
# Liver 
--json_dir /datafolds/Bodymap/Atlas9k_liver/Atlas9k_liver_fold0.json
--json_dir /datafolds/Bodymap/Atlas9k_liver/Atlas9k_liver_fold1.json
--json_dir /datafolds/Bodymap/Atlas9k_liver/Atlas9k_liver_fold2.json
--json_dir /datafolds/Bodymap/Atlas9k_liver/Atlas9k_liver_fold3.json
--json_dir /datafolds/Bodymap/Atlas9k_liver/Atlas9k_liver_fold4.json
#Pancreas
--json_dir /datafolds/Bodymap/Atlas9k_liver/Atlas9k_pancreas_fold0.json
--json_dir /datafolds/Bodymap/Atlas9k_liver/Atlas9k_pancreas_fold1.json
--json_dir /datafolds/Bodymap/Atlas9k_liver/Atlas9k_pancreas_fold2.json
--json_dir /datafolds/Bodymap/Atlas9k_liver/Atlas9k_pancreas_fold3.json
--json_dir /datafolds/Bodymap/Atlas9k_liver/Atlas9k_pancreas_fold4.json
#Kidney
--json_dir /datafolds/Bodymap/Atlas9k_liver/Atlas9k_kidney_fold0.json
--json_dir /datafolds/Bodymap/Atlas9k_liver/Atlas9k_kidney_fold1.json
--json_dir /datafolds/Bodymap/Atlas9k_liver/Atlas9k_kidney_fold2.json
--json_dir /datafolds/Bodymap/Atlas9k_liver/Atlas9k_kidney_fold3.json
--json_dir /datafolds/Bodymap/Atlas9k_liver/Atlas9k_kidney_fold4.json

Train on public data & Intern experiments:

# Public training data list
# Liver
--json_dir /datafolds/5_fold/liver/liver_tumor_0.json
--json_dir /datafolds/5_fold/liver/liver_tumor_1.json
--json_dir /datafolds/5_fold/liver/liver_tumor_2.json
--json_dir /datafolds/5_fold/liver/liver_tumor_3.json
--json_dir /datafolds/5_fold/liver/liver_tumor_4.json
# Pancreas
--json_dir /datafolds/5_fold/pancreas/pancreas_tumor_0.json
--json_dir /datafolds/5_fold/pancreas/pancreas_tumor_1.json
--json_dir /datafolds/5_fold/pancreas/pancreas_tumor_2.json
--json_dir /datafolds/5_fold/pancreas/pancreas_tumor_3.json
--json_dir /datafolds/5_fold/pancreas/pancreas_tumor_4.json
# Kidney
--json_dir /datafolds/5_fold/kidney/kidney_tumor_0.json
--json_dir /datafolds/5_fold/kidney/kidney_tumor_1.json
--json_dir /datafolds/5_fold/kidney/kidney_tumor_2.json
--json_dir /datafolds/5_fold/kidney/kidney_tumor_3.json
--json_dir /datafolds/5_fold/kidney/kidney_tumor_4.json

Acknowledgement

This work was supported by the Lustgarten Foundation for Pancreatic Cancer Research and the McGovern Foundation. The segmentation backbone is based on Swin UNETR; we appreciate the effort of the MONAI Team to provide and maintain open-source code to the community.

About

[MICCAI 2024] Cellular Automata for Tumor Development - Realistic Synthetic Tumors in Liver, Pancreas, and Kidney

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published