-
Notifications
You must be signed in to change notification settings - Fork 8
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #239 from Merck/218-independent-testing-of-early_z…
…ero_weight 218 independent testing of early zero weight
- Loading branch information
Showing
1 changed file
with
170 additions
and
0 deletions.
There are no files selected for viewing
170 changes: 170 additions & 0 deletions
170
tests/testthat/test-independent_test_early_zero_weight.R
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,170 @@ | ||
test_that("early_zero_weight() with unstratified data", { | ||
set.seed(123456) | ||
early_period <- 2 | ||
|
||
output <- sim_pw_surv(n = 200) |> | ||
cut_data_by_event(125) |> | ||
counting_process(arm = "experimental") |> | ||
early_zero_weight(early_period = early_period) | ||
|
||
observed <- output$weight | ||
expected <- dplyr::if_else(output$tte < early_period, 0, 1) | ||
expect_equal(observed, expected) | ||
}) | ||
|
||
test_that("early_zero_weight() with stratified data when fail_rate is not provided", { | ||
set.seed(123456) | ||
early_period <- 2 | ||
n <- 500 | ||
|
||
# Two strata | ||
stratum <- c("Biomarker-positive", "Biomarker-negative") | ||
prevalence_ratio <- c(0.6, 0.4) | ||
enroll_rate <- gsDesign2::define_enroll_rate( | ||
stratum = rep(stratum, each = 2), | ||
duration = c(2, 10, 2, 10), | ||
rate = c(c(1, 4) * prevalence_ratio[1], c(1, 4) * prevalence_ratio[2]) | ||
) | ||
enroll_rate$rate <- enroll_rate$rate * n / sum(enroll_rate$duration * enroll_rate$rate) | ||
# Failure rate | ||
med_pos <- 10 # Median of the biomarker positive population | ||
med_neg <- 8 # Median of the biomarker negative population | ||
hr_pos <- c(1, 0.7) # Hazard ratio of the biomarker positive population | ||
hr_neg <- c(1, 0.8) # Hazard ratio of the biomarker negative population | ||
fail_rate <- gsDesign2::define_fail_rate( | ||
stratum = rep(stratum, each = 2), | ||
duration = c(3, 1000, 4, 1000), | ||
fail_rate = c(log(2) / c(med_pos, med_pos, med_neg, med_neg)), | ||
hr = c(hr_pos, hr_neg), | ||
dropout_rate = 0.01 | ||
) | ||
temp <- to_sim_pw_surv(fail_rate) # Convert the failure rate | ||
x <- sim_pw_surv( | ||
n = n, # Sample size | ||
# Stratified design with prevalence ratio of 6:4 | ||
stratum = data.frame(stratum = stratum, p = prevalence_ratio), | ||
# Randomization ratio | ||
block = c("control", "control", "experimental", "experimental"), | ||
enroll_rate = enroll_rate, # Enrollment rate | ||
fail_rate = temp$fail_rate, # Failure rate | ||
dropout_rate = temp$dropout_rate # Dropout rate | ||
) |> | ||
cut_data_by_event(125) |> | ||
counting_process(arm = "experimental") | ||
|
||
expect_error( | ||
early_zero_weight(x, early_period = early_period), | ||
"For stratified design to use `early_zero_weight\\(\\)`, `fail_rate` can't be `NULL`." | ||
) | ||
}) | ||
|
||
test_that("early_zero_weight() with stratified data when fail_rate is not correctly provided", { | ||
set.seed(123456) | ||
early_period <- 2 | ||
n <- 500 | ||
|
||
# Two strata | ||
stratum <- c("Biomarker-positive", "Biomarker-negative") | ||
prevalence_ratio <- c(0.6, 0.4) | ||
enroll_rate <- gsDesign2::define_enroll_rate( | ||
stratum = rep(stratum, each = 2), | ||
duration = c(2, 10, 2, 10), | ||
rate = c(c(1, 4) * prevalence_ratio[1], c(1, 4) * prevalence_ratio[2]) | ||
) | ||
enroll_rate$rate <- enroll_rate$rate * n / sum(enroll_rate$duration * enroll_rate$rate) | ||
# Failure rate | ||
med_pos <- 10 # Median of the biomarker positive population | ||
med_neg <- 8 # Median of the biomarker negative population | ||
hr_pos <- c(1, 0.7) # Hazard ratio of the biomarker positive population | ||
hr_neg <- c(1, 0.8) # Hazard ratio of the biomarker negative population | ||
fail_rate <- gsDesign2::define_fail_rate( | ||
stratum = rep(stratum, each = 2), | ||
duration = c(3, 1000, 4, 1000), | ||
fail_rate = c(log(2) / c(med_pos, med_pos, med_neg, med_neg)), | ||
hr = c(hr_pos, hr_neg), | ||
dropout_rate = 0.01 | ||
) | ||
fail_rate_wrong <- data.frame( | ||
stratum = c(rep("Biomarker-positive", 3), rep("Biomarker-negative", 2)), | ||
duration = c(3, 4, 1000, 4, 1000), | ||
fil_rate = c(log(2) / c(med_pos, med_pos, med_pos, med_neg, med_neg)), | ||
dropout_rate = rep(0.01, 5), | ||
hr = c(1, 1, 0.7, 1, 0.8), | ||
stringsAsFactors = FALSE | ||
) | ||
temp <- to_sim_pw_surv(fail_rate) # Convert the failure rate | ||
x <- sim_pw_surv( | ||
n = n, # Sample size | ||
# Stratified design with prevalence ratio of 6:4 | ||
stratum = data.frame(stratum = stratum, p = prevalence_ratio), | ||
# Randomization ratio | ||
block = c("control", "control", "experimental", "experimental"), | ||
enroll_rate = enroll_rate, # Enrollment rate | ||
fail_rate = temp$fail_rate, # Failure rate | ||
dropout_rate = temp$dropout_rate # Dropout rate | ||
) |> | ||
cut_data_by_event(125) |> | ||
counting_process(arm = "experimental") | ||
|
||
expect_error( | ||
early_zero_weight(x, early_period = early_period, fail_rate = fail_rate_wrong), | ||
"`early_zero_weight\\(\\)` only allows delayed treatment effect, that is, 2 piece failure rate with HR = 1 at the first period." | ||
) | ||
}) | ||
|
||
test_that("early_zero_weight() with stratified data when fail_rate is correctly provided", { | ||
set.seed(123456) | ||
early_period <- 2 | ||
n <- 500 | ||
# Two strata | ||
stratum <- c("Biomarker-positive", "Biomarker-negative") | ||
prevalence_ratio <- c(0.6, 0.4) | ||
enroll_rate <- gsDesign2::define_enroll_rate( | ||
stratum = rep(stratum, each = 2), | ||
duration = c(2, 10, 2, 10), | ||
rate = c(c(1, 4) * prevalence_ratio[1], c(1, 4) * prevalence_ratio[2]) | ||
) | ||
enroll_rate$rate <- enroll_rate$rate * n / sum(enroll_rate$duration * enroll_rate$rate) | ||
# Failure rate | ||
med_pos <- 10 # Median of the biomarker positive population | ||
med_neg <- 8 # Median of the biomarker negative population | ||
hr_pos <- c(1, 0.7) # Hazard ratio of the biomarker positive population | ||
hr_neg <- c(1, 0.8) # Hazard ratio of the biomarker negative population | ||
fail_rate <- gsDesign2::define_fail_rate( | ||
stratum = rep(stratum, each = 2), | ||
duration = c(3, 1000, 4, 1000), | ||
fail_rate = c(log(2) / c(med_pos, med_pos, med_neg, med_neg)), | ||
hr = c(hr_pos, hr_neg), | ||
dropout_rate = 0.01 | ||
) | ||
fail_rate_wrong <- data.frame( | ||
stratum = c(rep("Biomarker-positive", 3), rep("Biomarker-negative", 2)), | ||
duration = c(3, 4, 1000, 4, 1000), | ||
fil_rate = c(log(2) / c(med_pos, med_pos, med_pos, med_neg, med_neg)), | ||
dropout_rate = rep(0.01, 5), | ||
hr = c(1, 1, 0.7, 1, 0.8), | ||
stringsAsFactors = FALSE | ||
) | ||
temp <- to_sim_pw_surv(fail_rate) # Convert the failure rate | ||
output <- sim_pw_surv( | ||
n = n, # Sample size | ||
# Stratified design with prevalence ratio of 6:4 | ||
stratum = data.frame(stratum = stratum, p = prevalence_ratio), | ||
# Randomization ratio | ||
block = c("control", "control", "experimental", "experimental"), | ||
enroll_rate = enroll_rate, # Enrollment rate | ||
fail_rate = temp$fail_rate, # Failure rate | ||
dropout_rate = temp$dropout_rate # Dropout rate | ||
) |> | ||
cut_data_by_event(125) |> | ||
counting_process(arm = "experimental") |> | ||
early_zero_weight(early_period = early_period, fail_rate = fail_rate) | ||
|
||
observed <- output$weight | ||
expected <- dplyr::if_else( | ||
output$stratum == "Biomarker-negative", | ||
dplyr::if_else(output$tte < 4, 0, log(0.8)), | ||
dplyr::if_else(output$tte < 3, 0, log(0.7)) | ||
) | ||
expect_equal(observed, expected) | ||
}) |