-
Notifications
You must be signed in to change notification settings - Fork 8
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
245 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,245 @@ | ||
#### unstratified, FH (Fleming-Harrington) ---- | ||
# Check value when Fleming-Harrington weight is used | ||
test_that("wlr() with FH weight on unstratified data", { | ||
# Example 1: Unstratified | ||
set.seed(123456) | ||
base <- sim_pw_surv(n = 200) |> | ||
cut_data_by_event(125) #|> | ||
output <- base |> | ||
wlr(weight = fh(rho = c(0, 0, 1, 1), gamma = c(0, 1, 0, 1))) | ||
|
||
observed <- output$z | ||
base <- base |> counting_process(arm = "experimental") | ||
expected <- c() | ||
for (i in 1:length(observed)) { | ||
base <- base |> mutate(weight=s^(output$rho[i])*(1-s)^(output$gamma[i])) | ||
z <- sum(base$o_minus_e*base$weight)/sqrt(sum(base$weight^2*base$var_o_minus_e)) | ||
expected <- c(expected,z) | ||
} | ||
expect_equal(observed, expected) | ||
}) | ||
|
||
|
||
#### stratified, FH (Fleming-Harrington) ---- | ||
# Check value when Fleming-Harrington weight is used | ||
test_that("wlr() with FH weight on stratified data", { | ||
# Example 1: Stratified | ||
set.seed(123456) | ||
n <- 500 | ||
# Two strata | ||
stratum <- c("Biomarker-positive", "Biomarker-negative") | ||
prevalence_ratio <- c(0.6, 0.4) | ||
enroll_rate <- gsDesign2::define_enroll_rate( | ||
stratum = rep(stratum, each = 2), | ||
duration = c(2, 10, 2, 10), | ||
rate = c(c(1, 4) * prevalence_ratio[1], c(1, 4) * prevalence_ratio[2]) | ||
) | ||
enroll_rate$rate <- enroll_rate$rate * n / sum(enroll_rate$duration * enroll_rate$rate) #?? | ||
# Failure rate | ||
med_pos <- 10 # Median of the biomarker positive population | ||
med_neg <- 8 # Median of the biomarker negative population | ||
hr_pos <- c(1, 0.7) # Hazard ratio of the biomarker positive population | ||
hr_neg <- c(1, 0.8) # Hazard ratio of the biomarker negative population | ||
fail_rate <- gsDesign2::define_fail_rate( | ||
stratum = rep(stratum, each = 2), | ||
duration = c(3, 1000, 4, 1000), | ||
fail_rate = c(log(2) / c(med_pos, med_pos, med_neg, med_neg)), | ||
hr = c(hr_pos, hr_neg), | ||
dropout_rate = 0.01 | ||
) | ||
temp <- to_sim_pw_surv(fail_rate) # Convert the failure rate | ||
set.seed(123456) | ||
base <- sim_pw_surv( | ||
n = n, # Sample size | ||
# Stratified design with prevalence ratio of 6:4 | ||
stratum = tibble(stratum = stratum, p = prevalence_ratio), | ||
# Randomization ratio | ||
block = c("control", "control", "experimental", "experimental"), | ||
enroll_rate = enroll_rate, # Enrollment rate | ||
fail_rate = temp$fail_rate, # Failure rate | ||
dropout_rate = temp$dropout_rate # Dropout rate | ||
) |> | ||
cut_data_by_event(125) | ||
|
||
output <- base |> | ||
wlr(weight = fh(rho = c(0, 0, 1, 1), gamma = c(0, 1, 0, 1))) | ||
|
||
observed <- output$z | ||
base <- base |> counting_process(arm = "experimental") | ||
expected <- c() | ||
for (i in 1:length(observed)) { | ||
base <- base |> mutate(weight=s^(output$rho[i])*(1-s)^(output$gamma[i])) | ||
z <- sum(base$o_minus_e*base$weight)/sqrt(sum(base$weight^2*base$var_o_minus_e)) | ||
expected <- c(expected,z) | ||
} | ||
expect_equal(observed, expected) | ||
}) | ||
|
||
|
||
#### unstratified, MB (Magirr and Burman) ---- | ||
# Check value when Magirr and Burman weight is used | ||
test_that("wlr() with MB weight on unstratified data", { | ||
# Example 1: Unstratified | ||
set.seed(123456) | ||
delay <- 4 | ||
w_max <- 2 | ||
base <- sim_pw_surv(n = 200) |> | ||
cut_data_by_event(125) | ||
output <- base |> | ||
wlr(weight = mb(delay = delay, w_max = w_max)) | ||
|
||
observed <- output$z | ||
base <- base |> counting_process(arm = "experimental") | ||
base2 <- base |> filter(tte<=delay) | ||
expected <- c() | ||
for (i in 1:length(observed)) { | ||
wht <- base2 |> group_by(stratum) %>% summarise(mx = max(1/s)) |> mutate(mx = pmin(mx,w_max)) | ||
base <- base |> full_join(wht, by=c('stratum')) |> mutate(weight=pmin(1/s,mx)) | ||
z <- sum(base$o_minus_e*base$weight)/sqrt(sum(base$weight^2*base$var_o_minus_e)) | ||
expected <- c(expected,z) | ||
} | ||
expect_equal(observed, expected) | ||
}) | ||
|
||
|
||
#### stratified, MB (Magirr and Burman) ---- | ||
# Check value when Magirr and Burman weight is used | ||
test_that("wlr() with MB weight on stratified data", { | ||
# Example 2: Stratified | ||
set.seed(123456) | ||
delay <- 4 | ||
w_max <- 2 | ||
n <- 500 | ||
# Two strata | ||
stratum <- c("Biomarker-positive", "Biomarker-negative") | ||
prevalence_ratio <- c(0.6, 0.4) | ||
enroll_rate <- gsDesign2::define_enroll_rate( | ||
stratum = rep(stratum, each = 2), | ||
duration = c(2, 10, 2, 10), | ||
rate = c(c(1, 4) * prevalence_ratio[1], c(1, 4) * prevalence_ratio[2]) | ||
) | ||
enroll_rate$rate <- enroll_rate$rate * n / sum(enroll_rate$duration * enroll_rate$rate) #?? | ||
# Failure rate | ||
med_pos <- 10 # Median of the biomarker positive population | ||
med_neg <- 8 # Median of the biomarker negative population | ||
hr_pos <- c(1, 0.7) # Hazard ratio of the biomarker positive population | ||
hr_neg <- c(1, 0.8) # Hazard ratio of the biomarker negative population | ||
fail_rate <- gsDesign2::define_fail_rate( | ||
stratum = rep(stratum, each = 2), | ||
duration = c(3, 1000, 4, 1000), | ||
fail_rate = c(log(2) / c(med_pos, med_pos, med_neg, med_neg)), | ||
hr = c(hr_pos, hr_neg), | ||
dropout_rate = 0.01 | ||
) | ||
temp <- to_sim_pw_surv(fail_rate) # Convert the failure rate | ||
set.seed(123456) | ||
base <- sim_pw_surv( | ||
n = n, # Sample size | ||
# Stratified design with prevalence ratio of 6:4 | ||
stratum = tibble(stratum = stratum, p = prevalence_ratio), | ||
# Randomization ratio | ||
block = c("control", "control", "experimental", "experimental"), | ||
enroll_rate = enroll_rate, # Enrollment rate | ||
fail_rate = temp$fail_rate, # Failure rate | ||
dropout_rate = temp$dropout_rate # Dropout rate | ||
) |> | ||
cut_data_by_event(125) | ||
|
||
output <- base |> | ||
wlr(weight = mb(delay = delay, w_max = w_max)) | ||
|
||
observed <- output$z | ||
base <- base |> counting_process(arm = "experimental") | ||
base2 <- base |> filter(tte<=delay) | ||
expected <- c() | ||
for (i in 1:length(observed)) { | ||
wht <- base2 |> group_by(stratum) %>% summarise(mx = max(1/s)) |> mutate(mx = pmin(mx,w_max)) | ||
base <- base |> full_join(wht, by=c('stratum')) |> mutate(weight=pmin(1/s,mx)) | ||
z <- sum(base$o_minus_e*base$weight)/sqrt(sum(base$weight^2*base$var_o_minus_e)) | ||
expected <- c(expected,z) | ||
} | ||
expect_equal(observed, expected) | ||
}) | ||
|
||
|
||
#### unstratified, early_zero_weight ---- | ||
# Check value when early_zero_weight is used | ||
test_that("wlr() with early_zero_weight on unstratified data", { | ||
# Example 1: Unstratified | ||
set.seed(123456) | ||
early_period = 4 | ||
base <- sim_pw_surv(n = 200) |> | ||
cut_data_by_event(125) | ||
output <- base |> | ||
wlr(weight = early_zero(early_period = early_period)) | ||
|
||
observed <- output$z | ||
# WLR using early_zero_weight yields the same results as directly removing the events happening earlier than `early_period` | ||
base <- base |> counting_process(arm = "experimental") %>% filter(tte>=early_period) | ||
expected <- c() | ||
for (i in 1:length(observed)) { | ||
# base <- base |> mutate(weight=if_else(tte<early_period,0,1)) | ||
z <- sum(base$o_minus_e)/sqrt(sum(base$var_o_minus_e)) | ||
expected <- c(expected,z) | ||
} | ||
expect_equal(observed, expected) | ||
}) | ||
|
||
|
||
#### stratified, early_zero_weight ---- | ||
# Check value when early_zero_weight is used | ||
test_that("wlr() with early_zero_weight on stratified data", { | ||
# Example 2: Stratified | ||
set.seed(123456) | ||
early_period = 4 | ||
n <- 500 | ||
# Two strata | ||
stratum <- c("Biomarker-positive", "Biomarker-negative") | ||
prevalence_ratio <- c(0.6, 0.4) | ||
enroll_rate <- gsDesign2::define_enroll_rate( | ||
stratum = rep(stratum, each = 2), | ||
duration = c(2, 10, 2, 10), | ||
rate = c(c(1, 4) * prevalence_ratio[1], c(1, 4) * prevalence_ratio[2]) | ||
) | ||
enroll_rate$rate <- enroll_rate$rate * n / sum(enroll_rate$duration * enroll_rate$rate) #?? | ||
# Failure rate | ||
med_pos <- 10 # Median of the biomarker positive population | ||
med_neg <- 8 # Median of the biomarker negative population | ||
hr_pos <- c(1, 0.7) # Hazard ratio of the biomarker positive population | ||
hr_neg <- c(1, 0.8) # Hazard ratio of the biomarker negative population | ||
fail_rate <- gsDesign2::define_fail_rate( | ||
stratum = rep(stratum, each = 2), | ||
duration = c(3, 1000, 4, 1000), | ||
fail_rate = c(log(2) / c(med_pos, med_pos, med_neg, med_neg)), | ||
hr = c(hr_pos, hr_neg), | ||
dropout_rate = 0.01 | ||
) | ||
temp <- to_sim_pw_surv(fail_rate) # Convert the failure rate | ||
set.seed(123456) | ||
x <- sim_pw_surv( | ||
n = n, # Sample size | ||
# Stratified design with prevalence ratio of 6:4 | ||
stratum = tibble(stratum = stratum, p = prevalence_ratio), | ||
# Randomization ratio | ||
block = c("control", "control", "experimental", "experimental"), | ||
enroll_rate = enroll_rate, # Enrollment rate | ||
fail_rate = temp$fail_rate, # Failure rate | ||
dropout_rate = temp$dropout_rate # Dropout rate | ||
) |> | ||
cut_data_by_event(125) | ||
|
||
output <- base |> | ||
wlr(weight = early_zero(early_period = early_period)) | ||
|
||
observed <- output$z | ||
# WLR using early_zero_weight yields the same results as directly removing the events happening earlier than `early_period` | ||
base <- base |> counting_process(arm = "experimental") %>% filter(tte>=early_period) | ||
expected <- c() | ||
for (i in 1:length(observed)) { | ||
# base <- base |> mutate(weight=if_else(tte<early_period,0,1)) | ||
z <- sum(base$o_minus_e)/sqrt(sum(base$var_o_minus_e)) | ||
expected <- c(expected,z) | ||
} | ||
expect_equal(observed, expected) | ||
}) | ||
|