Skip to content

Patch-based approaches such as Block Matching and 3D collaborative Filtering (BM3D) algorithm represent the current state-of-the-art in image denoising. However, BM3D still suffers from degradation in performance in smooth areas as well as loss of image details, specifically in the presence of high noise levels. Integrating shape adaptive method…

Notifications You must be signed in to change notification settings

MenaMassoud/FrameworkForKernelBasedBM3D

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 

Repository files navigation

FrameworkForKernelBasedBM3DAlg-

Patch-based approaches such as Block Matching and 3D collaborative Filtering (BM3D) algorithm represent the current state-of-the-art in image denoising. However, BM3D still suffers from degradation in performance in smooth areas as well as loss of image details, specifically in the presence of high noise levels.

Integrating shape adaptive methods with BM3D improves the denoising outcome including the visual quality of the denoised image; and also maintains image details. In this study, we proposed a framework that produces multiple images using various shapes. These images were aggregated at the pixel or patch levels for both stages in BM3D, and when appropriately aggregated, resulted in better denoising performance than BM3D by 1.15 dB, on average.

About

Patch-based approaches such as Block Matching and 3D collaborative Filtering (BM3D) algorithm represent the current state-of-the-art in image denoising. However, BM3D still suffers from degradation in performance in smooth areas as well as loss of image details, specifically in the presence of high noise levels. Integrating shape adaptive method…

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published