Skip to content

KimJiSeong1994/GNN_paper_list

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 

Repository files navigation

GNN paper list survey

1. Survey

  • Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2018). How powerful are graph neural networks?. arXiv preprint arXiv:1810.00826. [paper] [paper_review]
  • Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Philip, S. Y. (2020). A comprehensive survey on graph neural networks. IEEE transactions on neural networks and learning systems, 32(1), 4-24. [paper]
  • Cai, H., Zheng, V. W., & Chang, K. C. C. (2018). A comprehensive survey of graph embedding: Problems, techniques, and applications. IEEE transactions on knowledge and data engineering, 30(9), 1616-1637. [paper]
  • Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., ... & Sun, M. (2020). Graph neural networks: A review of methods and applications. AI open, 1, 57-81. [paper]
  • Gao, C., Zheng, Y., Li, N., Li, Y., Qin, Y., Piao, J., ... & Li, Y. (2021). Graph neural networks for recommender systems: Challenges, methods, and directions. arXiv preprint arXiv:2109.12843, 1, 46-58. [paper]
  • Rampášek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf, G., & Beaini, D. (2022). Recipe for a general, powerful, scalable graph transformer. Advances in Neural Information Processing Systems, 35, 14501-14515. [paper]
  • Veličković, P. (2023). Everything is connected: Graph neural networks. Current Opinion in Structural Biology, 79, 102538. [paper]
  • Wang, X., Bo, D., Shi, C., Fan, S., Ye, Y., & Philip, S. Y. (2022). A survey on heterogeneous graph embedding: methods, techniques, applications and sources. IEEE Transactions on Big Data, 9(2), 415-436. [paper]
  • Fortunato, S. (2010). Community detection in graphs. Physics reports, 486(3-5), 75-174. [paper]
  • Peng, B., Zhu, Y., Liu, Y., Bo, X., Shi, H., Hong, C., ... & Tang, S. (2024). Graph retrieval-augmented generation: A survey. arXiv preprint arXiv:2408.08921. [paper]

2. Aggregate architecture


3. Graph Pooling


4. Temporal Graph Learning


5. Community Detection


6.Knowledge Graph


7. Application

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published