Skip to content

Implementing computer vision fundamentals with the famous MNIST data.

Notifications You must be signed in to change notification settings

KarthikShetty27/Digit-Recognizer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MINST_DIgit Recognizer

Digit-Recognizer

Implementing computer vision fundamentals with the famous MNIST data

MNIST ("Modified National Institute of Standards and Technology") is the de facto “hello world” dataset of computer vision. Since its release in 1999, this classic dataset of handwritten images has served as the basis for benchmarking classification algorithms. As new machine learning techniques emerge, MNIST remains a reliable resource for researchers and learners alike. From a collection of tens of thousands of handwritten photos, I will attempt to accurately identify digits in this Project.

The Programming Language used in this project is Python and the development environment used is Google Colab .


Data Description:

The data files train.csv and test.csv contain gray-scale images of hand-drawn digits, from zero through nine.

Each image is 28 pixels in height and 28 pixels in width, for a total of 784 pixels in total. Each pixel has a single pixel-value associated with it, indicating the lightness or darkness of that pixel, with higher numbers meaning darker. This pixel-value is an integer between 0 and 255, inclusive.

The training data set, (train.csv), has 785 columns. The first column, called "label", is the digit that was drawn by the user. The rest of the columns contain the pixel-values of the associated image.

Each pixel column in the training set has a name like pixelx, where x is an integer between 0 and 783, inclusive. To locate this pixel on the image, suppose that we have decomposed x as x = i * 28 + j, where i and j are integers between 0 and 27, inclusive. Then pixelx is located on row i and column j of a 28 x 28 matrix, (indexing by zero).

000 001 002 003 ... 026 027
028 029 030 031 ... 054 055
056 057 058 059 ... 082 083
 |   |   |   |  ...  |   |
728 729 730 731 ... 754 755
756 757 758 759 ... 782 783

The test data set, (test.csv), is the same as the training set, except that it does not contain the "label" column.