-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
125 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,125 @@ | ||
# Copyright 2023 Yuan He | ||
|
||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
|
||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import os | ||
import json | ||
from typing import Optional | ||
from datasets import load_dataset | ||
import logging | ||
from tqdm import tqdm | ||
|
||
logger = logging.getLogger(__name__) | ||
|
||
|
||
def load_hf_dataset(path: str, name: Optional[str] = None, **config_kwargs): | ||
""" | ||
Load a HiT dataset from Hugging Face. | ||
See available datasets on: https://huggingface.co/Hierarchy-Transformers | ||
Args: | ||
path (str): Dataset path on Hugging Face. | ||
name (Optional[str]): Name of a specific subset if any. Defaults to `None`. | ||
""" | ||
return load_dataset(path, name, **config_kwargs) | ||
|
||
|
||
def load_zenodo_dataset( | ||
path: str, | ||
negative_type: str = "random", | ||
example_type: str = "triplet", | ||
entity_to_index: Optional[dict] = None, | ||
return_entity_lexicon: bool = False, | ||
): | ||
""" | ||
Load a HiT dataset from a local version downloaded from Zenodo. | ||
It is recommended to use `load_hf_dataset` from this library or `load_dataset` from HuggingFace datasets if one doesn't require the original entity IDs. | ||
See available datasets on: https://doi.org/10.5281/zenodo.10511042 | ||
Args: | ||
path (str): Path to a local dataset downloaded from Zenodo. | ||
negative_type (str): Type of negative examples. Options are `['random', 'hard']`. | ||
example_type (str): Type of example structure. Options are `['triplet', 'pair', 'idx']`. | ||
entity_to_index (Optional[dict], optional): A dictionary to transform entity IDs to indices (one-hot encoding) required by the static hierarchy models. Defaults to `None`. | ||
return_entity_lexicon (bool, optional): Whether or not to return the lexicon of entity IDs to their names (and potentially other textual information). Defaults to `False`. | ||
""" | ||
assert negative_type in ["random", "hard"], f"Unknown negative type '{negative_type}'." | ||
assert example_type in ["triplet", "pair", "idx"], f"Unknown example type '{example_type}'." | ||
if example_type == "idx": | ||
assert entity_to_index is not None, "The `ent2idx` dictionary is not found." | ||
|
||
# check if train, val, test splits are all there | ||
datafiles = dict() | ||
for split in ["train", "val", "test"]: | ||
split_path = os.path.join(path, f"{split}.jsonl") | ||
if os.path.isfile(split_path): | ||
datafiles[split] = split_path | ||
else: | ||
logger.info(f"No {split} split available.") | ||
|
||
# load the jsonl dataset altogther | ||
dataset = load_dataset("json", data_files=datafiles) | ||
|
||
# load the entity lexicon for id to names | ||
with open(os.path.join(path, "entity_lexicon.json"), "r") as input: | ||
entity_lexicon = json.load(input) | ||
|
||
transform = { | ||
"triplet": zenodo_example_to_triplets, | ||
"pair": zenodo_example_to_pairs, | ||
"idx": zenodo_example_to_idxs, | ||
}[example_type] | ||
|
||
if entity_to_index: | ||
entity_lexicon = entity_to_index | ||
|
||
for split in dataset.keys(): | ||
dataset[split] = dataset[split].map(lambda example: transform(example, negative_type, entity_lexicon)) | ||
|
||
return dataset, entity_lexicon if return_entity_lexicon else dataset | ||
|
||
|
||
def zenodo_example_to_triplets(example: dict, negative_type: str, entity_lexicon: dict): | ||
""" | ||
Helper function to present Zenodo dataset examples into triplets of the form `(child, parent, negative)`. | ||
""" | ||
child = entity_lexicon[example["child"]]["name"] | ||
parent = entity_lexicon[example["parent"]]["name"] | ||
negative_type = f"{negative_type}_negatives" | ||
negative_parents = [entity_lexicon[neg]["name"] for neg in example[negative_type]] | ||
return [(child, parent, neg) for neg in negative_parents] | ||
|
||
|
||
def zenodo_example_to_pairs(example: dict, negative_type: str, entity_lexicon: dict): | ||
""" | ||
Helper function to present Zenodo dataset examples into labelled pairs of the form `(child, parent, label)`. | ||
""" | ||
child = entity_lexicon[example["child"]]["name"] | ||
parent = entity_lexicon[example["parent"]]["name"] | ||
negative_type = f"{negative_type}_negatives" | ||
negative_parents = [entity_lexicon[neg]["name"] for neg in example[negative_type]] | ||
return [(child, parent, 1.0)] + [(child, neg, 0.0) for neg in negative_parents] | ||
|
||
|
||
def zenodo_example_to_idxs(example: dict, negative_type: str, entity_to_indices: dict): | ||
""" | ||
Helper function to present Zenodo dataset examples into an entity index list of `(child_idx, paren_idx, *negative_idxs)`. | ||
""" | ||
child = entity_to_indices[example["child"]] | ||
parent = entity_to_indices[example["parent"]] | ||
negative_type = f"{negative_type}_negatives" | ||
negative_parents = [entity_to_indices[neg] for neg in example[negative_type]] | ||
return [child, parent] + negative_parents |