Skip to content

Commit

Permalink
Update main.py
Browse files Browse the repository at this point in the history
  • Loading branch information
KOSASIH authored Jun 2, 2024
1 parent a5cfd45 commit 04fc38d
Showing 1 changed file with 36 additions and 1 deletion.
37 changes: 36 additions & 1 deletion src/cosmic_pi_network/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,10 @@
from cosmic_pi_network.data_preprocessing import DataPreprocessing
from cosmic_pi_network.neural_network import NeuralNetwork
from cosmic_pi_network.nlp import NLP
from cosmic_pi_network.quantum_computing import QuantumCircuit
from cosmic_pi_network.artificial_intelligence import AIAgent
from cosmic_pi_network.cryptography import Crypto
from cosmic_pi_network.machine_learning import ReinforcementLearning

def main():
api = API()
Expand All @@ -23,7 +27,7 @@ def main():
thresh_image = computer_vision.apply_threshold(grayscale_image)
edges_image = computer_vision.detect_edges(grayscale_image)
faces = computer_vision.detect_faces(grayscale_image)
print("Number offaces detected:", len(faces))
print("Number of faces detected:", len(faces))

data_preprocessing = DataPreprocessing()
data = data_preprocessing.load_data("data.csv")
Expand All @@ -36,5 +40,36 @@ def main():
loss, accuracy = neural_network.evaluate_model(model, X_test_scaled, y_test)
print("Loss:", loss, "Accuracy:", accuracy)

quantum_circuit = QuantumCircuit()
qubits = quantum_circuit.create_qubit(2)
gates = [cirq.H(qubits[0]), cirq.CNOT(qubits[0], qubits[1])]
circuit = quantum_circuit.create_circuit(qubits, gates)
result = quantum_circuit.simulate_circuit(circuit)
print("Result:", result)

ai_agent = AIAgent()
X = np.array([[1, 2], [3, 4], [5, 6]])
y = np.array([0, 0, 1])
clf = ai_agent.create_decision_tree(X, y)
prediction = ai_agent.make_prediction(clf, X)
print("Prediction:", prediction)
accuracy = ai_agent.evaluate_model(clf, X, y)
print("Accuracy:", accuracy)

crypto = Crypto()
key = crypto.generate_key_pair()
data = b"Hello, World!"
encrypted_data = crypto.encrypt_data(key, data)
print("Encrypted data:", encrypted_data)
decrypted_data = crypto.decrypt_data(key, encrypted_data)
print("Decrypted data:", decrypted_data)

reinforcement_learning = ReinforcementLearning()
env = reinforcement_learning.create_environment("CartPole-v1")
model = reinforcement_learning.create_agent(env)
model = reinforcement_learning.train_agent(model, env)
rewards = reinforcement_learning.evaluate_agent(model, env)
print("Rewards:", rewards)

if __name__ == "__main__":
main()

0 comments on commit 04fc38d

Please sign in to comment.