https://www.youtube.com/watch?v=pMcoeFpf4oM
-
Install Dependencies:
pip install poetry
-
Download data and models here: https://drive.google.com/file/d/1hinxrf1u1hMRsR6_g1fP84wumLJKvKce/view?usp=sharing
The folder structure should look like this:
├── data <-- You added this from the google drive link
│ └── ...
├── design
│ └── ...
├── src
│ └── ...
├── Dockerfile
...
└── README.me
-
Run
make venv
to create virtual environment -
Activate venv
source .venv/bin/activate
-
Install Torch Geometric
pip install torch-geometric==2.3.1
\ -
Run Streamlit:
streamlit run src/webapp.py
\ -
(Optional) To train the model using your own polypharmacy datasets rn:
pharmageddon train --train <path to training set> --test <path to test set> --out <path to output directory> [--config <path to config file> --checkpoint <path to trained model>]
-
(Optional) Use the trained model to predict side effects for your chemical compound of interest. The
--checkpoint
parameter can be omitted - the default model will then be used.--effects
can also be omitted, probabilities for all available effects are predicted then.pharmageddon predict --graph <path to polypharmacy graph> --drugs <drug1> <drug2> [--checkpoint <path_to_model> --effects <effect1> <effect2>]
** Banner generated with AI