Skip to content

[NeurIPS'24] GoMatching: A Simple Baseline for Video Text Spotting via Long and Short Term Matching

Notifications You must be signed in to change notification settings

Hxyz-123/GoMatching

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GoMatching: A Simple Baseline for Video Text Spotting via Long and Short Term Matching

Haibin He, Maoyuan Ye, Jing Zhang, Juhua Liu, Dacheng Tao

Introduction | News | Usage | Main Results | Statement

Introduction

  1. We identify a main bottleneck in the state-of-the-art video text spotter: the limited recognition capability. In response to this issue, we propose to efficiently turn an off-the-shelf query-based image text spotter into a specialist on video and present a simple baseline termed GoMatching.
  2. We introduce a rescoring mechanism and long-short term matching module to adapt image text spotter to video datasets and enhance the tracker's capabilities.
  3. We establish the ArTVideo test set for addressing the absence of curved texts in current video text spotting datasets and evaluating the performance of video text spotters on videos with arbitrary-shaped text. ArTVideo contains 20 video clips, featuring 30% curved text approximately.
  4. GoMatching only requires 3 hours training on one Nvidia RTX 3090 GPU for ICDAR15-video. For video text spotting task, GoMatching achieves 70.52 MOTA on ICDAR15-video, setting a new record on the leaderboard. We reveal the probability of freezing off-the-shelf ITS part and focusing on tracking, thereby saving training budgets while reaching SOTA performance.

News

13/01/2024

  • The paper is uploaded to arxiv!

20/01/2024

  • Update ArTVideo and refresh a new record on ICDAR15-video!

Usage

Dataset

Videos in ICDAR15-video and DSText should be extracted into frames. And using json format annotation files [ICDAR15-video & DSText] we provide for training. For ArTVideo, you can download it to ./datasets. The prepared Data organization is as follows:

|- ./datasets
		|--- ICDAR15
		|      |--- frame
		|            |--- Video_10_1_1
		|                       |--- 1.jpg
		|                       └---  ...
		|			 └--- ...
		|      |--- frame_test
		|				|--- Video_11_4_1
		|						|--- 1.jpg
		|                       └---  ...
		|               └--- ...
		|      |--- vts_train.json
		|      └--- vts_test_wo_anno.json
		|
		|--- DSText
		|      |--- frame
		|            |--- Activity
		|            		|--- Video_163_6_3
		|                       		|--- 1.jpg
		|                       		└---  ...
		|                   └--- ...
		|			 └--- ...
		|      |--- frame_test
		|				|--- Activity
		|            		|--- Video_162_6_2
		|                       		|--- 1.jpg
		|                       		└---  ...
		|                   └--- ...
		|			 	└--- ...
		|      |--- vts_train.json
		|      └--- vts_test_wo_anno.json
		|--- ArTVideo
		|      |--- frame
		|            |--- video_1
		|                    |--- 1.jpg
		|                    └---  ...
		|			 └--- ...
		|      |--- json
		|            |--- video_1.json
		|			 └--- ...
		|      |--- video
		|            |--- video_1.mp4
		|			 └--- ...

Installation

Python_3.8 + PyTorch_1.9.0 + CUDA_11.1 + Detectron2_v0.6

git clone https://github.com/Hxyz-123/GoMatching.git
cd GoMatching
conda create -n gomatching python=3.8 -y
conda activate gomatching
pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html
pip install -r requirements.txt
python -m pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu111/torch1.9/index.html
cd third_party
python setup.py build develop

Pre-trained model

We share the trained deepsolo weights we use in GoMatching. You can download it to ./pretrained_models. If you want to use other model weights in official deepsolo, run following code to decouple the backbone and transformer in deepsolo before training GoMatching.

python tools/decouple_deepsolo.py --input path_to_original_weights  --output output_path

Train

ICDAR15

python train_net.py --num-gpus 1 --config-file configs/GoMatching_ICDAR15.yaml

DSText

python train_net.py --num-gpus 1 --config-file configs/GoMatching_DSText.yaml

Evaluation

ICDAR15

python eval.py --config-file configs/GoMatching_ICDAR15.yaml --input ./datasets/ICDAR15/frame_test/ --output output/icdar15 --opts MODEL.WEIGHTS trained_models/ICDAR15/xxx.pth

cd output/icdar15/preds
zip -r ../preds.zip ./*

Then you can submit the zip file to the official websit for evaluation.

DSText

python eval.py --config-file configs/GoMatching_DSText.yaml --input ./datasets/DSText/frame_test/ --output output/dstext --opts MODEL.WEIGHTS trained_models/DSText/xxx.pth

cd output/dstext/preds
zip -r ../preds.zip ./*

Then you can submit the zip file to the official websit for evaluation.

ArTVideo The standard of evaluation is consistent with BOVText.

python eval.py --config-file configs/GoMatching_Eval_ArTVideo.yaml --input ./datasets/ArTVideo/frame/ --output output/artvideo --opts MODEL.WEIGHTS trained_models/ICDAR15/xxx.pth

### evaluation
# 1. eval tracking on straight and curve text
python tools/Evaluation_Protocol_ArtVideo/eval_trk.py --groundtruths ./datasets/ArTVideo/json/ --tests output/artvideo/jsons/

# 2. eval tracking on curve text only
python tools/Evaluation_Protocol_ArtVideo/eval_trk.py --groundtruths ./datasets/ArTVideo/json/ --tests output/artvideo/jsons/ --curve

# 3. eval spotting on straight and curve text
python tools/Evaluation_Protocol_ArtVideo/eval_e2e.py --groundtruths ./datasets/ArTVideo/json/ --tests output/artvideo/jsons/

# 4. eval spotting on curve text only
python tools/Evaluation_Protocol_ArtVideo/eval_e2e.py --groundtruths ./datasets/ArTVideo/json/ --tests output/artvideo/jsons/ --curve

Note: If you want to visualize the results, you can add --show argument as follow:

python eval.py --config-file configs/GoMatching_ICDAR15.yaml --input ./datasets/ICDAR15/frame_test/ --output output/icdar15 --show --opts MODEL.WEIGHTS trained_models/ICDAR15/xxx.pth

Main Results

ICDAR15-video Video Text Spotting challenge

Method MOTA MOTP IDF1 Weight
GoMatching 72.04 78.53 80.11 GoogleDrive

DSText Video Text Spotting challenge

Method MOTA MOTP IDF1 Weight
GoMatching 17.29 77.48 45.20 GoogleDrive

Statement

This project is for research purpose only. For any other questions please contact haibinhe@whu.edu.cn.

Citation

If you find GoMatching helpful, please consider giving this repo a star and citing:

@article{he2024gomatching,
  title={GoMatching: A Simple Baseline for Video Text Spotting via Long and Short Term Matching},
  author={He, Haibin and Ye, Maoyuan and Zhang, Jing and Liu, Juhua and Tao, Dacheng},
  journal={arXiv preprint arXiv:2401.07080},
  year={2024}
}

@inproceedings{ye2023deepsolo,
  title={DeepSolo: Let Transformer Decoder with Explicit Points Solo for Text Spotting},
  author={Ye, Maoyuan and Zhang, Jing and Zhao, Shanshan and Liu, Juhua and Liu, Tongliang and Du, Bo and Tao, Dacheng},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={19348--19357},
  year={2023}
}

Acknowledgements


This project is based on DeepSolo, GTR and TransDETR.

About

[NeurIPS'24] GoMatching: A Simple Baseline for Video Text Spotting via Long and Short Term Matching

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages