For this project, you will work with the Reacher environment.
The goal of your agent is to maintain its position at the target location for as many time steps as possible.
33-D vector
- contains the agent's position, rotation, velocity, and angular velocities of the arm, etc.
4-D vector, corresponding to torque applicable to two joints.
- Every entry in the action vector should be a number between -1 and 1.
+0.1
- for each step that the agent's hand is in the goal location
Your agents must get an average score of +30 (over 100 consecutive episodes, and over all agents)
- After each episode, we add up the rewards that each agent received (without discounting), to get a score for each agent. This yields 20 (potentially different) scores. We then take the average of these 20 scores.
- This yields an average score for each episode (where the average is over all 20 agents).
-
Download the environment from one of the links below. You need only select the environment that matches your operating system:
- Linux: click here
- Mac OSX: click here
- Windows (32-bit): click here
- Windows (64-bit): click here
(For Windows users) Check out this link if you need help with determining if your computer is running a 32-bit version or 64-bit version of the Windows operating system.
(For AWS) If you'd like to train the agent on AWS (and have not enabled a virtual screen), then please use this link (version 2) to obtain the "headless" version of the environment. You will not be able to watch the agent without enabling a virtual screen, but you will be able to train the agent. (To watch the agent, you should follow the instructions to enable a virtual screen, and then download the environment for the Linux operating system above.)
-
Place the file in the code/ folder, and unzip (or decompress) the file.
To set up your python environment to run the code in this repository, follow the instructions below.
-
Create (and activate) a new environment with Python 3.6.
- Linux or Mac:
conda create --name drlnd python=3.6 source activate drlnd
- Windows:
conda create --name drlnd python=3.6 activate drlnd
-
If running in Windows, ensure you have the "Build Tools for Visual Studio 2019" installed from this site. This article may also be very helpful. This was confirmed to work in Windows 10 Home.
-
Follow the instructions in this repository to perform a minimal install of OpenAI gym.
-
Clone the repository (if you haven't already!), and navigate to the
python/
folder. Then, install several dependencies.git clone https://github.com/udacity/deep-reinforcement-learning.git cd deep-reinforcement-learning/python pip install .
-
Create an IPython kernel for the
drlnd
environment.python -m ipykernel install --user --name drlnd --display-name "drlnd"
-
Before running code in a notebook, change the kernel to match the
drlnd
environment by using the drop-downKernel
menu.
Follow the instructions in code/Continuous_Control.ipynb
to get started with training your own agent!