scMaSigPro
is an R package designed for analyzing single-cell RNA-seq data over pseudotime. Building on the maSigPro package, it identifies genes with significant expression changes across branching paths in a pseudotime-ordered dataset. This guide provides a step-by-step workflow for ScMaSigPro, making it accessible for users.
# Install Dependencies
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install(version = "3.14")
BiocManager::install(c('SingleCellExperiment', 'maSigPro', 'MatrixGenerics', 'S4Vectors'))
To install scMaSigPro
from GitHub, use the following R code:
# Install devtools if not already installed
if (!requireNamespace("devtools", quietly = TRUE)) {
install.packages("devtools")
}
# Install scMaSigPro
devtools::install_github("BioBam/scMaSigPro",
ref = "main",
build_vignettes = FALSE,
build_manual = TRUE,
upgrade = "never",
force = TRUE,
quiet = TRUE)
The basic workflow of scMaSigPro
involves the following steps:
set.seed(123)
library(scMaSigPro)
data("splat.sim", package = "scMaSigPro")
# Helper Function to convert annotated SCE object to scmpObject
scmp.ob <- as_scmp(
object = splat.sim, from = "sce",
align_pseudotime = FALSE,
verbose = TRUE,
additional_params = list(
labels_exist = TRUE,
exist_ptime_col = "Step",
exist_path_col = "Group"
)
)
This function discretizes a continuous pseudotime column into bins:
scmp.ob <- sc.squeeze(scmp.ob)
scmp.ob <- sc.set.poly(scmp.ob)
scmp.ob <- sc.p.vector(scmp.ob)
scmp.ob <- sc.t.fit(scmp.ob)
scmp.ob <- sc.filter(scmp.ob, vars = "all")
plotTrend(scmp.ob, "Gene10")
For detailed instructions and additional steps, please refer to the following vignettes.
Contributions, including bug reports, suggestions, and pull requests, are welcome.
This project is licensed under GPL>=2 - see the LICENSE.md file for details.
This project has received funding from the European Union’s Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Skłodowska-Curie Grant Agreement No 953407.
If you use scMaSigPro
in your research, please cite:
Priyansh Srivastava, Marta Benegas Coll, Stefan Götz, María José Nueda, Ana Conesa, "scMaSigPro: differential expression analysis along single-cell trajectories"", Bioinformatics, Volume 40, Issue 7, July 2024, btae443, https://doi.org/10.1093/bioinformatics/btae443