Skip to content

Build and evaluate clustering models using PySpark 3.0.1 library.

License

Notifications You must be signed in to change notification settings

Ansu-John/ML-Clustering

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ML Clustering

OBJECTIVE

The code shared demonstrates the various clustering algorithms using Python.

DATASET USED

Please find the data used, uploaded to github along with the code.

TOOLS

Python, Spark MLlib

TECHNIQUES

K-means

k-means is one of the most commonly used clustering algorithms that clusters the data points into a predefined number of clusters. The MLlib implementation includes a parallelized variant of the k-means++ method called kmeans||.

KMeans is implemented as an Estimator and generates a KMeansModel as the base model.

Latent Dirichlet allocation (LDA)

LDA is implemented as an Estimator that supports both EMLDAOptimizer and OnlineLDAOptimizer, and generates a LDAModel as the base model. Expert users may cast a LDAModel generated by EMLDAOptimizer to a DistributedLDAModel if needed.

Bisecting k-means

Bisecting k-means is a kind of hierarchical clustering using a divisive (or “top-down”) approach: all observations start in one cluster, and splits are performed recursively as one moves down the hierarchy.

Bisecting K-means can often be much faster than regular K-means, but it will generally produce a different clustering.

BisectingKMeans is implemented as an Estimator and generates a BisectingKMeansModel as the base model.

Gaussian Mixture Model (GMM)

A Gaussian Mixture Model represents a composite distribution whereby points are drawn from one of k Gaussian sub-distributions, each with its own probability. The spark.ml implementation uses the expectation-maximization algorithm to induce the maximum-likelihood model given a set of samples.

GaussianMixture is implemented as an Estimator and generates a GaussianMixtureModel as the base model.

Power Iteration Clustering (PIC)

Power Iteration Clustering (PIC) is a scalable graph clustering algorithm developed by Lin and Cohen. From the abstract: PIC finds a very low-dimensional embedding of a dataset using truncated power iteration on a normalized pair-wise similarity matrix of the data.