Skip to content

An Acute Lymphoblastic Leukemia CNN based on the proposed architecture in the Acute Leukemia Classification Using Convolution Neural Network In Clinical Decision Support System paper, using the Acute Lymphoblastic Leukemia Image Database for Image Processing dataset. Project by Adam Milton-Barker.

License

Notifications You must be signed in to change notification settings

AMLResearchProject/ALL-Tensorflow-Classifier-2020

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Peter Moss Acute Myeloid & Lymphoblastic Leukemia AI Research Project

Acute Lymphoblastic Leukemia Tensorflow CNN 2020

Acute Lymphoblastic Leukemia Tensorflow 2020

CURRENT RELEASE UPCOMING RELEASE Contributions Welcome! Issues LICENSE

 

Table Of Contents

 

Introduction

Acute Lymphoblastic Leukemia Tensorflow 2020

Fig 1. Proposed architecture (Source)

In this project we will a network based on the proposed architecture in the Acute Leukemia Classification Using Convolution Neural Network In Clinical Decision Support System paper, built using Tensorflow 2.

This project is compatible with the Acute Lymphoblastic Detection System feature of HIAS.

 

DISCLAIMER

These projects should be used for research purposes only. The purpose of the projects is to show the potential of Artificial Intelligence for medical support systems such as diagnosis systems.

Although the classifiers are accurate and show good results both on paper and in real world testing, they are not meant to be an alternative to professional medical diagnosis.

Developers that have contributed to this repository have experience in using Artificial Intelligence for detecting certain types of cancer. They are not a doctors, medical or cancer experts.

Please use this system responsibly.

 

ALL-IDB

You need to be granted access to use the Acute Lymphoblastic Leukemia Image Database for Image Processing dataset. You can find the application form and information about getting access to the dataset on this page as well as information on how to contribute back to the project here. If you are not able to obtain a copy of the dataset please feel free to try this tutorial on your own dataset, we would be very happy to find additional AML & ALL datasets.

ALL_IDB1

In this project, ALL-IDB1 is used, one of the datsets from the Acute Lymphoblastic Leukemia Image Database for Image Processing dataset. We will use data augmentation to increase the amount of training and testing data we have.

"The ALL_IDB1 version 1.0 can be used both for testing segmentation capability of algorithms, as well as the classification systems and image preprocessing methods. This dataset is composed of 108 images collected during September, 2005. It contains about 39000 blood elements, where the lymphocytes has been labeled by expert oncologists. The images are taken with different magnifications of the microscope ranging from 300 to 500."

 

Classifier

We have tested our model on a number of different hardwares, including Intel® CPUs & NVIDIA GPUs. Results seem to vary between CPU & GPU, and tests show further investigation into seeding and randomness introduced to our network via the GPU software. For reproducible results every time, it is suggested to train on a CPU, although this obviously requires more time.

One method to overcome reproducibility issues and get an good idea of how well our model is behaving on GPU would be to test the model multiple times and take an average. This is one way we will explore our model in the future.

Below are the results from individual training sessions.

OS Hardware Training Validation Test Accuracy Recall Precision AUC/ROC
Google Colab Tesla K80 GPU 1180 404 20 0.9727723 0.9727723 0.9727723 0.9948964
Windows 10 NVIDIA GeoForce GTX 1060 1180 404 20 0.97066015 0.97066015 0.97066015 0.9908836
Ubuntu 18.04 NVIDIA GTX 1050 Ti Ti/PCIe/SSE2 1180 404 20 0.97772276 0.97772276 0.97772276 0.9989155
Ubuntu 18.04 Intel® Core™ i7-7700HQ CPU @ 2.80GHz × 8 1180 404 20 0.9752475 0.9752475 0.9752475 0.991492
Windows 10 Intel® Core™ i7-7700HQ CPU @ 2.80GHz × 8 1180 404 20 0.9851485 0.9851485 0.9851485 0.9985846
macOS Mojave 10.14.6 Intel® Core™ i5 CPU @ 2.4 GHz 1180 404 20 0.9589041 0.9589041 0.9589041 0.99483955

 

Setup

Follow the guides below to build your Virtual Reality Acute Lymphoblastic Leukemia Detection System. The classifiers can be used as standalone if required, but this project focuses on the system as a whole.

Project Description Status
CNN Applies filters to the original dataset and increases the amount of training / test data. Provides code for training a CNN for detecting ALL. Hosts a REST API endpoint that provides access to the model for inference. COMPLETE
RPI 4 Applies filters to the original dataset and increases the amount of training / test data. Provides code for training a CNN for detecting ALL. Hosts a REST API endpoint that provides access to the model for inference. COMPLETE

 

Contributing

The Peter Moss Acute Myeloid & Lymphoblastic Leukemia AI Research project encourages and welcomes code contributions, bug fixes and enhancements from the Github.

Please read the CONTRIBUTING document for a full guide to forking our repositories and submitting your pull requests. You will also find information about our code of conduct on this page.

Contributors

 

Versioning

We use SemVer for versioning.

 

License

This project is licensed under the MIT License - see the LICENSE file for details.

 

Bugs/Issues

We use the repo issues to track bugs and general requests related to using this project. See CONTRIBUTING for more info on how to submit bugs, feature requests and proposals.

About

An Acute Lymphoblastic Leukemia CNN based on the proposed architecture in the Acute Leukemia Classification Using Convolution Neural Network In Clinical Decision Support System paper, using the Acute Lymphoblastic Leukemia Image Database for Image Processing dataset. Project by Adam Milton-Barker.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published