Skip to content

This repository contains the code to create on-device machine learning models for species classification.

License

Notifications You must be signed in to change notification settings

AMI-system/species_classifier

Repository files navigation

Species Classifier Models

This repo creates PyTorch species classification models based on GBIF images (see the gbif_download_standalone repo for information and code to downloading images).

This model is built using pytorch. The user needs to run the following scripts in a sequence to train the model:

Training the Models for a Given Region

The easiest way to run this pipeline is to use the regional_scripst/{region}_model.sh files.

To run this for a given species list with Slurm (e.g., on Baskerville or JASMIN). For example sbatch regional_scripts/costarica_model.sh, which will output to cr_train.out.

Scripts

The pipeline is comprised of 4 scripts:

01-create_dataset_split.py

This creates training, validation and testing splits of the data downloaded from GBIF.

python 01_create_dataset_split.py \
    --data_dir /bask/homes/f/fspo1218/amber/data/gbif_download_standalone/gbif_images/ \
    --write_dir /bask/homes/f/fspo1218/amber/data/gbif_costarica/ \
    --species_list /bask/homes/f/fspo1218/amber/projects/gbif_download_standalone/species_checklists/costarica-moths-keys-nodup.csv \
    --train_ratio 0.75 \
    --val_ratio 0.10 \
    --test_ratio 0.15 \
    --filename 01_costarica_data

The description of the arguments to the script:

  • --data_dir: Path to the root directory containing the GBIF data. Required.
  • --write_dir: Path to the directory for saving the split files. Required.
  • --train_ratio: Proportion of data for training. Required.
  • --val_ratio: Proportion of data for validation. Required.
  • --test_ratio: Proportion of data for testing. Required.
  • --filename: Initial name for the split files. Required.
  • --species_list: Path to the species list. Required.

02_calculate_taxa_statistics.py

This calculates information and statistics regarding the taxonomy to be used for model training.

python 02_calculate_taxa_statistics.py \
    --species_list /bask/homes/f/fspo1218/amber/projects/gbif_download_standalone/species_checklists/costarica-moths-keys-nodup.csv \
    --write_dir /bask/homes/f/fspo1218/amber/data/gbif_costarica/ \
    --numeric_labels_filename 01_costarica_data_numeric_labels \
    --taxon_hierarchy_filename 01_costarica_data_taxon_hierarchy \
    --training_points_filename 01_costarica_data_count_training_points \
    --train_split_file /bask/homes/f/fspo1218/amber/data/gbif_costarica/01_costarica_data-train-split.csv

The description of the arguments to the script:

  • --species_list: Path to the species list. Required.
  • --write_dir: Path to the directory for saving the information. Required.
  • --numeric_labels_filename: Filename for numeric labels file. Required.
  • --taxon_hierarchy_filename: Filename for taxon hierarchy file. Required.
  • --training_points_filename: Filename for storing the count of training points. Required.
  • --train_split_file: Path to the training split file. Required.

THEN after this is done you need to add the number fo families, genus, and species to the ./configs/01_uk_macro_data_config.json file. This is done manually.

03_create_webdataset.py

Creates webdataset from raw image data. It needs to be run individually for each of the train, validation and test sets.

So we will loop through each set:

for VARIABLE in 'train' 'val' 'test'
do
    echo '--' $VARIABLE
    mkdir -p /bask/homes/f/fspo1218/amber/data/gbif_costarica/$VARIABLE
    python 03_create_webdataset.py \
        --dataset_dir /bask/homes/f/fspo1218/amber/data/gbif_download_standalone/gbif_images/ \
        --dataset_filepath /bask/homes/f/fspo1218/amber/data/gbif_costarica/01_costarica_data-$VARIABLE-split.csv \
        --label_filepath /bask/homes/f/fspo1218/amber/data/gbif_costarica/01_costarica_data_numeric_labels.json \
        --image_resize 500 \
        --max_shard_size 100000000 \
        --webdataset_pattern "/bask/homes/f/fspo1218/amber/data/gbif_costarica/$VARIABLE/$VARIABLE-500-%06d.tar"
done

04_train_model.py

Training the Pytorch model. This step required the use of wandb. The user needs to create an account and login to the platform. The user will then need to set up a project and pass the entity (username) and project into the config file. This can be run with nohup:

nohup sh -c 'python 04_train_model.py  \
    --train_webdataset_url "$train_url" \
    --val_webdataset_url "$val_url" \
    --test_webdataset_url "$test_url" \
    --config_file ./configs/01_costarica_data_config.json \
    --dataloader_num_workers 6 \
    --random_seed 42' &

The description of the arguments to the script:

  • --train_webdataset_url: path to webdataset tar files for training
  • --val_webdataset_url: path to webdataset tar files for validation
  • --test_webdataset_url: path to webdataset tar files for testing
  • --config_file: path to configuration file containing training information
  • --dataloader_num_workers: number of cpus available
  • --random_seed: random seed for reproducible experiments

For setting up the config file: The total families, genuses, and species are spit out at the end of 02_calculate_taxa_statistics.py so you can use this info to fill in the config lines 5-7.

About

This repository contains the code to create on-device machine learning models for species classification.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published